分析:求出最大值和最小值比较简单,使用贪心法,求最小值的时候我们让所有的0尽可能的向后延迟就可以了,求最大值则相反。 关键在于求出可以组合出的数字个数。
这就是组合数学版的dp了,我们让dp[i][j]表示当前i个0,和前j个1被接收后所能形成的数字个数,初始条件为dp[0][0] = 1; 决策有两种,第一种转移到dp[i+1][j]也就是多接收一个0,这时候定义F1[]数组记录1的发送时间,F0[]数组记录0的发送时间,那么如上方程的转移条件为 F1[j+1]+d >= F0[i+1],也就是第i+1个0能先于第j+1个1被接收。另一种转移到dp[i][j+1],也是一样的道理。最后注意一下边界的特判,dp[sum0][sum1]就是答案。
注意: 关于上述方法有人可能会问,我们在同一时刻接收到了多个数字,按照题目要求应该*排列,为什么上述方法,完全没有体现到这一点呢? 不要被迷惑了,我们关心的是多少个1和0被接收,而不是哪个1先被接收,我们的循环里完全记录下了各种情况的个数。
坑点:这个题的数组范围很大,如果不用unsighed long long,就会爆long long,我也因为这个WA了很多次。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define LL unsigned long long
#define N 70
int n,d,bit[N];
struct ID{
int s1,s0;
}id[N];
LL k;
void Get_Bit(){
LL tmp = k;
int ip = ;
memset(bit,,sizeof(bit));
while(tmp)
{
if(tmp&) bit[ip] = ;
ip++;
tmp >>= ;
}
}
LL mypow(int x){
LL tmp = ;
for(int i = ;i <= x;i++) tmp *= ;
return tmp;
}
LL Get_Min(){
for(int i = ;i <= n;i++){
if(bit[i]) {id[i].s1 = ; id[i].s0 = ;}
else {id[i].s0 = ; id[i].s1 = ;}
}
for(int i = n;i >= ;i--){
if(bit[i]){
id[i].s1--;
if(i-d >= ) id[i-d].s1++;
else id[].s1++;
}
}
LL Min = ;
int ip = ;
for(int i = ;i <= n;i++){
while(id[i].s1 > ) {Min += mypow(ip); id[i].s1--; ip++;}
while(id[i].s0 > ) {ip++; id[i].s0--;}
}
// cout<<"MIN = "<<Min<<endl;
return Min;
}
LL Get_Max(){
for(int i = ;i <= n;i++){
if(bit[i]) {id[i].s1 = ; id[i].s0 = ;}
else {id[i].s0 = ; id[i].s1 = ;}
}
for(int i = n;i >= ;i--){
if(bit[i]==){
id[i].s0--;
if(i-d >= ) id[i-d].s0++;
else id[].s0++;
}
}
LL Max = ;
int ip = ;
for(int i = ;i <= n;i++){
while(id[i].s0 > ) {id[i].s0--; ip++;}
while(id[i].s1 > ) {Max += mypow(ip); ip++; id[i].s1--;}
}
// cout<<"MAX = "<<Max<<endl;
return Max;
}
LL Get_Ans(){
LL dp[N][N];
int sum0=,sum1=,f1[N],f0[N];
memset(dp,,sizeof(dp));
for(int i = n;i >= ;i--){
if(bit[i]) f1[++sum1] = n-i+;
else f0[++sum0] = n-i+;
}
dp[][] = ;
for(int i = ;i <= sum0;i++){
for(int j = ;j <= sum1;j++){
if(j == sum1 && i < sum0) dp[i+][j] += dp[i][j];
if(i == sum0 && j < sum1) dp[i][j+] += dp[i][j];
if(i==sum0 || j==sum1) continue;
if(f1[j+]+d >= f0[i+]) dp[i+][j] += dp[i][j];
if(f0[i+]+d >= f1[j+]) dp[i][j+] += dp[i][j];
}
}
return dp[sum0][sum1];
}
int main()
{
LL Min,Max,ans,ca=;
while(cin>>n){
if(n==) break;
cin>>d>>k;
Get_Bit();
Min = Get_Min();
Max = Get_Max();
ans = Get_Ans();
cout<<"Case "<<++ca<<": "<<ans<<" "<<Min<<" "<<Max<<endl;
}
return ;
}