@Python的getattr(),setattr(),delattr(),hasattr()
先转一篇博文,参考。最后再给出一个例子
getattr()函数是Python自省的核心函数,具体使用大体如下:
获取对象引用getattr
Getattr用于返回一个对象属性,或者方法
- class A:
- def __init__(self):
- self.name = 'zhangjing'
- #self.age='24'
- def method(self):
- print"method print"
- Instance = A()
- print getattr(Instance , 'name, 'not find') #如果Instance 对象中有属性name则打印self.name的值,否则打印'not find'
- print getattr(Instance , 'age', 'not find') #如果Instance 对象中有属性age则打印self.age的值,否则打印'not find'
- print getattr(a, 'method', 'default')
- #如果有方法method,否则打印其地址,否则打印default
- print getattr(a, 'method', 'default')()
- #如果有方法method,运行函数并打印None否则打印default
注:使用getattr可以轻松实现工厂模式。
例:一个模块支持html、text、xml等格式的打印,根据传入的formate参数的不同,调用不同的函数实现几种格式的输出
- import statsout
- def output(data, format="text"):
- output_function = getattr(statsout, "output_%s" % format)
- return output_function(data)
setattr( | object, name, value) |
This is the counterpart of getattr(). The arguments
are an object, a string and an arbitrary value. The string may name an existing
attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For example, setattr(x,
is equivalent to
'foobar', 123)x.foobar = 123
.
这是相对应的getattr()。参数是一个对象,一个字符串和一个任意值。字符串可能会列出一个现有的属性或一个新的属性。这个函数将值赋给属性的。该对象允许它提供。例如,setattr(x,“foobar”,123)相当于x.foobar = 123。
delattr( | object, name) |
This is a relative of setattr(). The arguments are
an object and a string. The string must be the name of one of the object’s
attributes. The function deletes the named attribute, provided the object allows
it. For example, delattr(x, 'foobar')
is
equivalent to del x.foobar
.
与setattr()相关的一组函数。参数是由一个对象(记住python中一切皆是对象)和一个字符串组成的。string参数必须是对象属性名之一。该函数删除该obj的一个由string指定的属性。delattr(x, 'foobar')=
del x.foobar
-
hasattr用于确定一个对象是否具有某个属性。
语法:
hasattr(object, name) -> bool
判断object中是否有name属性,返回一个布尔值。
>>> li=["zhangjing","zhangwei"]
>>> getattr(li,"pop")
<built-in method pop of list object at 0x011DF6C0>
>>> li.pop
<built-in method pop of list object at 0x011DF6C0>
>>> li.pop()
'zhangwei'
>>> getattr(li,"pop")()
'zhangjing'
>>>getattr(li, "append")("Moe")
--------------------------------------------------------------------------------------------------------------------------------------------------------
例子如下:
class WrapMe(object):
"""docstring for ClassName"""
def __init__(self, arg): self.__data = arg
def get(self):
return self.__data
def __repr__(self):
return 'self.__data'
def __str__(self):
return str(self.__data)
def __getattr__(self,attr):
return getattr(self.__data,attr)
wrappedComplex = WrapMe(3.5+4.2j)
print wrappedComplex
print wrappedComplex.real
print wrappedComplex.imag
print wrappedComplex.conjugate()
print wrappedComplex.get()
结果如下:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAALoAAACACAIAAAAzjeRtAAAAA3NCSVQICAjb4U/gAAAQqklEQVR4Xu1dCVgT1xaerCyCK0TBBRdQfK1P3KrVutS6gguIKIpWsOJXbC3WBVxfy1NxqaLiblHxWbUUqFiKVitVaq0oosGNsC8FZDOsGiAheZOEQCBzJxmSCWG48/H54b3nnnvOf/65987M4V5aQUEBAi+IgGYI0DUTg1IQASkCtJEjR0IkIAIaIsB0cnLSUBSKQQSYmZmZEAWIgIYIwLWLhkBBMSkCkC6QBwQQoA2xH0hAHIp2bATg6NKx40/Qexy6dBq1Leaa71AjghoNRJxhvTT8UcSKvkwle9h2ayJuBIwzNxAT26EZQLowes9dN70o9MeUWrlXdIspfmeu3UlI4nKT4q+f2zJngDG+u2aTTz+RCjf83N83xgS/QUMte6DX5adJ3J+WWjPw5BmWE1btvhBz7wmq/+/o0xum92Y3ExcLMu/G3E1/K1YqrcsID82b/JVzMw7hdQLrWiCgfPMpV7EGLfAYxDsaV6yAm0aXlCb+uO9iRmElYj358x27zkhy5+19JsBDVFQZu3ttSKqUcBJheU4NnmxDHXvg0h0LadkNHMVpwO43eazp8yt7z/IK6m0c12/97kz9kgWHkxsbSsrijwfEt1AgLvkr7KX/+oWDwg6l1OEoh1UABAB0YfWfMbNn5lluuUTRrr447tzphv9wee+Gzb04ZrgF89k/IoBiabGkjp/JS07GoonRe/5XDxlvnR/AVSYce6DHty65hw5mbT3yPo5eaZUgMdA7sUHmMa/GYca5yeOtjiVnixCW7RdREd59pHXpQXPdLzQzsYJ7I93CZ9aA4ymQL2oQxqrGnoxo3f41rmfZs9QK5aFc0Zzeqd9E50ndSxKfl+JxBRVnWiw8+xCdLO5dDfb50AJ3bpEqR8kSsLAo+Mjf5VjdYlmvKGOamLKE/MKqemmBMP24k4PDSMf9qRgDiKQy7WkpZ+ywbtiO43UC69CIYoLAtrDj0Mty+C3owLBe/MONLUPRJiW3v1l5sNnAoKJHWHD7xO6fXqS9QXqN89j4+fFjNa7LzmeBCSYly5KyE8vu8MXqRpYWfbEHLfxy4rvrvvf4jWOhijWNBUJ+Dp8219aShRSpn/HAajpoDTZdaCwTFiKsFbW4y+uLb2xy5XbtbjvV22/LPs+UlWd44LVLbVr42TQ5qtxnhT2iQxfOHfhDcLVr2I3NQxRgh8a7SH/NPDJvyZ2P/7us5vvlN9HFkpo1dPNI0bt95HfEm3HRZ/+DSg3Ygi6iakQI25RF66AB185tbLrUvyt7h5h0MUbnj2bDgagyL70yD0l5mYGMuLXVa9hF/0dgvigZVpObVCBx7N2ViWT+5rcoyZSOsG09D200DvY9hT55iQWFr1kjJw3rMWrY9cfbFc38r8fP2OHoFV2CQwKaucMXJ/eNf7zt0xNJ1ZoBQUfdQlD3iM53mmmnuhQ2XYTFr/JEbnYcJgJYytLoNDq7k1HTcoRpzuGYI1XFxVVY041R7/etaOUJ5SJEJMhJKUdBNaLza2qNs1OSk+V8o/29bf4ClEbSy8je50zg4HCf9eHPG6cXLP0m9l7Bx1zy9y7fdadUtmrR5GJzhnDq814VY6xrNGnewWWw6YJUJcemG3uMtGImNqw2GD1n+vnYZdx/kl74zmTAJM9NDrXxm5PfKdBj2XiERPowQhY6H0sTSgtp3SauXzss668nWW/qLUe7b3Tv/jLol0xZFeYlERRmKz6NG5tVCCW1pTnZr6sVLFDRjzD7LjoYstbi1vYj6Z3thnaWPYblZBYJcMYiacfMniMdzLIiXlRiWgEL1SAAoIu4KC78la/HJOvzWbmy4UJcwy8zH//ZN169zBhIXdGzm/u8998sBY/oEpFA3H/OBpfVZjREXJ4ae/TzwEs5SgOPMD8m6AAjp/X3uOmQ2ePN6MiCwNAFDS7yIz913JmE9dTehAGz18SZvVIi4wo1Ho3U4NfBqsGfGM0/3B25peQrt8O8dvkEwey/KjJ82uV5S8NeN5GaZfdFxEmbIFe/uIoOFmcduQt+/VCVcOzwwx6j+7W3b0Z0k649LDg2Y52d+la+4JUpD4DsPqMsE48G34dcaS17wKNLazW2cTt0VImIWtsfQapeXt7ueyBO80VwGxveLrqnHF3aBert1kjwZNRuXYKGk4cApAt52FJQM6QLBYNKnksq713QNKiNgV/PHtG/GwupKUi8dmLnoV+z8F5moGlQfwaPbaTd29+8p/knaPRpgDyvoGaSEFChi57SoEhyB6olFwEVuug4DYpc66F2PSOAs3YhLQ1Kzy7C7nSHgMroIlVNahqU7myHmvSOAPZrOmbnPv2t5GlQS80ueeKmQSmbbDJiW3To+F/cnINTwR+f9e4j7FBnCGCOLoj2aVAIpIvOYmRAinDWLlIrsdKgrK055tgsQ+RpUHloGhS8KIlAy7iTnQZFSRA7jlMt6aLrNKiOg2SH8BR7qdshXIdOEkdAzdqFuELYgsoIQLpQObo69w3SReeQUlkhpAuVo6tz3yBddA4plRVCulA5ujr3DUwXHe3ipHOLocI2RKDlazqFKTrbxakNfYNd6xwBbLroZBcnndsKFbY5AliTkY52cWpz36ABOkdAlS4Nuzh9h+7iRLC3hl2cQjTaxYmgbihuEAi0nIyY/ZfoZxcng/AeGkEQgZafGM0/OfvXwVHNlQifarCL05ffH5/N2/7pTgI78xA0FYq3PQIt6UIz6WVjpbqLU+POPNi7OK08EbKMv2+5f3Q+TIxq+5iSaEHLyUhfuziR6BJUTR4CLelCuKfW7eJEuBvYwCAQaDkZGYRR0AhDRUD1QdpQLYV2GQACkC4GEIT2YwKkS/uJlQFYCuliAEFoPyZAurSfWBmApTh0gYfrGUB8DMwEIF3g4XoGFimDMAf0mg4ermcQ4TE0IwB0If1wPWwcdJKWBQ/XwwZXF6XYkxE8XE8X2FJQB/boAg/Xo2CodeESNl3IO1xPtqtUl+khfxwYLT07S/x0yydeN/joOUP6SsuCh+tpQxtsupB3uJ5sV6mq+9tdXWRJNWJBkfTsNAQxGQQP19Mmjnpqi00X8g7Xk7klftd0NFqDn9XwcD09RVyrbrDpAg/X0wpU6jYG0IX0w/W0RrR1aVnwcD3tgAenR8HD9bRDlpKtsd+7SF2Fh+tRMuDaOQUeXbTT22at4eF6ZEJPObqQCRbUDZ6MIDYQARUEIF1UIIEFYARw6ALTo8CwddQaIF1gelRHpQSe34DXdAhMj8JDrcPWAehCenqU0Xv+Vw8Zb50fwFU+5ROmRxk4EbEnI5geZeBhayvzsEcXmB7VVvEw8H6x6UJeelS1a9iNzUMUoITGu0h/zTwyb8mdj/WzaxVMj9KGkdh0IS89KvM3v0VJaGYU29bz0EbjYN9TKbVojlTha9ZImB6lTRz11BabLuSlR4kEOSnS/DkjOr+m1jg7JTlZvtSlwfQoPUVcq26w6QLTo7QClbqNAXQhPT1KmB8TdICRU9dqZGF6VKuh06Ih+Is0TI/SAlaqNsV+7yL1FqZHUTXmWvgFHl20UNqWTWF6FJnoU44uZIIFdYMnI4gNREAFAUgXFUhgARgBAF3MJp5K5CZxuUnhHr2lf8us9mIO8L6WcNmVA9Cn0l5jeTrH9fKja94DAE/8KoqbFTCs3cMSIj37qW+ssT34HZJay7Ba/KMsKNxz0zqT2hNQOTi8wuIry8YOd7uUXy9vzLJdEy2ztfHnboCDsUKxpDo19tc/c2okwJ6aVxCV11Btq8V0YQ/Leqb/+duPuUmJsRe3zurNUmcMUfn612HuDh8suVjU+rdV6kxSV6/+vmumgf/rlnWXsqR/Fo8gkjp+dq2itr4kLjggTl1vTfVE5TXX3DpJ7e1hDlh+eK/z21O+i2LrJ/gdDAwuTXM/kyGHCssmovJYOvReBh5dsEyR1L7J5CU3XLyMItlgYjb5DFc+5ChPRrJJJGaH947Qm/FcbvzPOx2tG6iJLY8qMrVfsics7ik6eiXcjQz+bLBRowmMrqN9Tvz2mMt9qKQHYVlNXXcy5oFU/tY5vxnWDbczvfuHa8/cTORyH0TudrYxomE5olyGbQ/Yfmx97EHOboMLLu85dz81Pf7intDcQa4udk0eqDTCkQfjoKJF3wXE6IJpXXXcageH0c7HVd/os/vMHJG6y3n8WJcjFdO3+I42k7UHyDNtFu/aNDrtwDLHGU5LN51LrGrqjN13vqvZr5vcl/pFMeYo9JiO+Dpk78cloV+5Os5bdTJ/ys7DKwaihKRbztoZ5Nnt1ia3eV6nK2Ys7q92TgDYg3aPbT8mCDRz2xG9BLyEPNlwIip88qLKcrhdZyBXwfI4OGD2rNdCYnShWa0Ie6RYu8R8aacmFOKKP0J+SReIa3NiozOM7YdZ4k19zO42PSSvEx6+KijKT0uIufBTauNMh7x9cOTo9efpr2IvXEkxkevpMm6VMzv6m8DwhIz83KSoQ8de9Z3zSV8mrdsHbh8Ib3136o+0XN6tYwfvKud2EkWWgP2MThxzpLpEYDHn6N0/T8zj1JRUI505ZsDHBLA8Hg5EHdC5PF4AMTpTWrtIakpywDOzrG19eV65TERc97YOYXcywiNnTWpUdO75gKifne494ibGRUf//Y8i1MLS9OIamcJ3ZQKJTA+75/sDTC0/Co1f2GQlP7sLk8W2s6IX/p4nE0cEuc9fC22aJAj+Rsh+mW6JqKq0sACprNNwyY8hj4MDQfNJECdGF/nahafpylyCXko2A0dmucxbbpDb1JjxkyeMmzh7/QnPWbtdVofLT1+TSMTKx4jK9KD/iHiBc5eGvW52wih7CIJKixT9ikVEzx9VxpiA/fVvi6sQM0vT8rgAd3TFbzJqmhlSWVLd8FSpGjgceTAOqmr0XYJ3v+vbFpQAZSl/Rp3bv+HTNVHV/5451BRsQV3hiyxRvwlDu7TgoLA0rVDcw7aHfJpkWtpaqJkwwV0QqpFUpT8tNLEfLX98ZvYc8b55ybPUysa7BT2U0NqaY954d+LLa44DISO1FzYcuhgNWbbB22nM4D4ca/spTmO6vOEVNC1eVB2teBhytWLyt4Grp9j37TPIYarH1n2+w40RSdmjnxJMZnpNtWIi7H6Oq2Z0VW1KSkldRlREqrWH/4oPbW3HLtvs1S8z8ue0RgdYNh4h12+cXzGgkbxAeYI4kOIMUCmxyQhDDXvI19fCPK3kNTt+f7IDQdKD5rpfyMeQlRaB5P8R19Z2n7QmyKe3OUNcxrt5cP2pZDy6IG+fBq1cJ9i2buePa8yRWn76o5jvS9GDQ8UlN//jN3jvN1f/2iYoehb7R77QHmCJvBhkD8h+oDJR1v/Wbbbc438sYi2d/yxi21fncV66oFpA8kRxABpERgXgizT6EeD2juxVc/e+wA0ZGRZBnbgIGA3dEH3hvf3TVt6uxJUjpxI4GdXTOUt+ePjksrtm34zIsQ5qVUaAbuV28fGjK8t7MoAraLIBA4wuZHcL9bdPBICjS/t0B1pNLgKQLuTiSzHtkC4UCyi57kC6kIsvxbRDulAsoOS6A+lCLr4U0w7pQrGAkusOpAu5+FJMO6QLxQJKrjuQLuTiSzHtkC4UCyi57kC6kIsvxbRDulAsoOS6A+lCLr4U0w7pQrGAkusOpAu5+FJMO6QLxQJKrjuQLuTiSzHtkC4UCyi57kC6kIsvxbT/H6cjhL4RrjOZAAAAAElFTkSuQmCC" alt="" />
对象自有方法:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAANoAAAB+CAIAAADN8ph0AAAAA3NCSVQICAjb4U/gAAAPfElEQVR4Xu1d6bXlKA7mzpkUKgk7g/5TUdhJTBDXL4hOwg6iXxJ2ENVBvBFgswqMl4s3+dSpqitASB8yZhGCDeL5/v7+GZ+2YlU7/dA0Nj7Fux+J/buYiLoASnS4WT+d6vzagaIeUzC/oM4n/qcy+zxRgVRFaME0JiMPycGUXMlj8jH+P+Ut3u8Jfw7lKAqkjrg7PE01UaUuRnyBLYJOf/78+f37t2jFrn7VHcfB11ykX+y5mToXQ3+puP/1CvAX0iNel3Azda7bEEmS/ycpF2UiBLIgQOaYBWaqJA0BMsc0nChXFgRymqOcVSi1nJ8z6g5N+SobPu064qlfrNP1HivLEfrnqjOnOTo6LZq8d81X2fbNuLQ0sPLFXvJPyVJstKt5fsOkPICjPNsfZqw3FU3fll9NjJvHnggpCBxojinijXmGpumqShlEXbLmh8ECAPzpK1bOWmTH6p6pVVK04oU8QZquOayzRjW4A9E0x65uyuZfR6t0YggO+CiLB1Yzx2eiGCSRwj/fDXyUxWN8mYe2GwxrZGZfVTSsGlivOetqlEB1zd4dK0MCCnqIJ3ymZTfs9IUgz9C1KR1ztFpKtBAwzbFq4X3/+/VqXq9OgZ9OxJHt6roXGzl90U9M0U0LWbz7Ghqxk9BD7zPl7wfLGu2KOtYVMVMbGtZVbPrM40K6VIMnmCn0wcaXesrL7XGYXgOXAf1eiYC3SShs4Z+CvRl7q+2yZURjZyqwJ8ZzmEmyhN4LMzigOXV6xX4MKT2e/U/BfuSeJ+R0Nz/tatQvmycnY2W9ugLciJyOwNnGjmUZH+KZL52YfLCWtZX59bdGAg2MLFusbwu9vJpnKAfRP4iAs0kII0Ux9irbH2jJ8UknfkjQsihqGD7ouQzU07EXjAh7+RVWO4Fgi11l7LZ3AwxIGRitfLqXNUZ0xbV4uonu767rChi40rMnAqY5gtk1xf9+fn6ZFaQTUbFghAVch6op+OyYlcggDC1nEYu6KkrTHpPtBkZ+6oFJSWWMAp2ftn3Py8StserTu/J5jpQDEEDHjukf+4Sck2cQnxujkxg19ouMxqwkGMkx+880KIxwcMd/znAwzBMdO8YqSsCEsuAI+A5mJ31JYSek7KperYTnFdPuSo+VJa/meWu7jDnmhcWuDeY3FevmFtKPlPAudZ9tZn06XPkyeMnKZmZT53RyX1Mg3/32mnp8TGpzMvSxSojxiAD1jmQKJ0LAN0e5jIzs/O4n9TLXsv3qPZATqjJKPFDIdVVb+w7rWKhSvjlCku/6dRXgNsq5sfjGtkgvvlHOjcUdOdHFu3RdrJyoOa7kRcUIgY0IZDBH7jvteJiB0FMXb4wKVK9vOqNt1C9fcVRNREtU9Xxibq5JtdKcbz4GCNrEBjHRHP3Pd6JaUBUs2Ykl+JbVWoMO/M2ABr5n9WiQyhNN7IJ06wavq+WU6qwujquJOdfBe+h73CWCqbKtlnOjmgxMrIZtf/F0rHV8QA01UEDQJraI/ibh57a/FGezCpPoh7+Qil/r71k1UzZFz6kyBMbQUUhsESNmE29iSNXtntg7Ln197fdEfqtd32+HJ3/j2eg4fuAhrbWa6i/Oun59bb1Zy4EfdLIHIAII2sQW8dPmaHbF/D2IPlO30b/ZxQ5GLVIzisGpE8HTr++TDmSEAEGbWBM/bY4aXeFgpp7x3JNxJqszRpb7tgm8p/l6LENNfbxrjriLvhnUBE8/3VHYDRq0VCMb2sQ20XMwiwwC1gxoVEgzIzYXr2LypVUDKXFaYXxCA5Q1AsB0KTjgWcUPLYSpCRknlbRzXYiIcl1CzKKmIf0UU03JOOo6NigOCNrEBhGdyoBRGFayBJPz5TXC0p1PuP0kuoma5GC2y4eSmOyDwIqxo7FqOU6Z4Z+//tL/V//bOGLLVhEKZbbas1V0rJpo7S6RekcXEfp9IAIrescDpaWqb45APnPMFvbriGhj6oO7cXxyc2ubVS+bOX4+BNmk6xHRxuRCxOw6/2xzPD1DJnM0lrs54gvDhfFD/rMhyMItqZejw3ko5RQImOaYHqwMzRnRJ0cIMm7lm6KN8V0NL34a5iXF/VoQl7mI/pSUiIBpjunBytCckRozhSDbHG3MjZ8GG1hwtpsvVoN3h3KEw13mIupTUjIC3iYhB3+/CGZy3yG28bh7CLK10cZASGdzErY61O4UqoJDRPPst/PyAE6Zxo742/GJEGR4TYlUx3sKOnVsyqzXrWkenQhscja7d2wrHtYRotSZkRDTiaH3F9tR5QeYf9SNclNJt4OJh85B60N6R7/jQ0q6VXNfdd07qgImL+odERy3kJypjIhgBuFndey6KYLZPDHyBvAQZBDyS+dYEoJMxgCXIWjNRRx7fTFSOxPRxmo72hifuIR96yW3AsICqQDg4MHn5Lc9rKBI0MkqJhylmQigY8ctBh4oa3Uk4T7P76I0Pz/mGBrN1usdUZ4+0adA1cpPSvs44a5TUkzgwZ/b+EMFGvNj5Hx71tnCflG0set2uPnMMRNGFG0sE9AfqebQmfXeGlG0sb0Rzc3vVhHMKNpYbvPZu75b9Y57g0P8ciNA5pgbcaovgoBtjso3ADwE5kKw0N5EBFZKWoeAvQxejjew8QW3qivDFsljtci73USYnXDGdVJRqYciYHv0mEedmyZ85x44jMGlk/Kev6Lp3owui3yo/eysdnjsKG6VKvHq7FgtsJdGl0XiQBF1GQKhhR6+QwtbXXO3SsEAEi5dm4u9s0wkyv1cBLDekU9oeBS/cQM2Bg5YbEKuGAdKIwQ0Ap45Qn8nPKCjVma7rgx9H/ysE9aEwAIEbHPkXlcwU/ZvWnPcsUQkq6oRodWGpvpirvvWAgkoKyGgELAXerhH3/A1nkuCtUfXw08VK5q+LWVG+Kf17ZcgJgRWIHA7j54VGFCR0yDgjR1PIxkJ8kAEyBwf2OjnVZnM8bxt80DJyBwf2OjnVTmfOV4hglnK8cLztuUdJDvkJOFPD9uP/Jw1/1PAr/mnrXhm9OjgXGH0iOBcIUo/AoFMvSNFMLtD1/V5Hexl8KZs/nXqRIOVocSIsOePYKacic2V/4koApsZPp1oBDOVuU4IKBDB6tFJpjmiccnSiREczx/BLBQvtHi3bwigwRrl0wlmh1z6ucfFlxEAn5LkfKzB+HhQlP5X82per0Z2FenENajVNasaFvRkGxhsibftGs57lCnLqiyZ+Hv06QTDnfZEIY7pSATn0KoR7sgFuC3vUfEzeWQaO+Lgni6CGS6mS1Uf9vCevluEfqch4JgjDAqhU3yV/zY8cFQjvczSiaE6wSHNihjF80HUqJJVPRN1oGEUecowwAXQ7CXC2oJ/R3qYKEuUmGd7SOYQPXT5Y+LdkSG2ROcIOFMZimC2wCzsiy8HeV7IC2u2gCFldaYyffPLwQQGjonEGJh8RGX0jzBehOerHLs92fPFym9K0wO7MBv5AYaxsvpPKG8FsxrpWscv+pxyVe3ocGcSQyyIHkQg1zK4CE23602soWVaO6BetmqVOLTqHmqZefrt/B0Pi2AGgUlLPrmG7hVOs0XPdgT7hscnhE4SXhIYOdGp2vCy0QfVqmoGbvRwXgOmZbTUsxLo2/WOK3GgYqdA4NB1x1MgQEKcCAEyxxM1BomCm6NY7QgeI5So0d4EWc/uCGDmyPcdiuAmshCBIpjt3hLEEBDwzVFsgnVNIFiUBI0imJHxfAQB1xyFn6z0TYnURxHMIuBQ0noEbHPkAU7KdsESLgwgZ4aY60Wjks9DwFwGl8a4aA1XLvma17s9D0LSeD8EzN4RPsGjB4GYVkd6Popgtl8LECcDAdMczZv0pB+A+mw7pkkRzMiIPoLAyj1rHsFseJWvLy4UmLEME/4RCYnpgxCgPesHNfb5VXUXes4vMUl4YwTIHG/cuNdTjczxem12Y4nJHG/cuNdTLZ85XiGC2fb2iyzWbmc+z8EGORvk84Kl5sh1dMs+0EQRzOaPMckciw6C+Zl9SmrFh+TL1DtSBLPU7mFDPgdkwQnitsCZMnHjyiUeo3dsq3fx/uO8FenEyOvET5eaez5OVuMoKv42Q4Z3D5vpM/EdIYOMGemGgQSuCWdq1R6UkVfRrDgZb9BHPIZSeM5JElOvKSeYimbAIbJZKoYO3c8p4QyAnKZ7pPFyJtmbhPAe/c2Dory0U8RDIpgJh2K4+E48HYMbafmj45LBLcnadQnQ6Xi+1ux5pGU6NiQtyfobi3UGI04/KppiaHHuanEpGq+dGSJBFYEwcTquFSLM2UjOxzo9WBmac41254hgJhyKp9hjUxQyOy6ZjqIxOYSuaWk01hkYnB8VDQUTLtwzavcCH6FlLkTMNHbEETlRBDPboRgX95PU1JNHIKfKekNPU8cc04OVoTlDDXb+CGa2y1xIj33ofqyzUFQ0vz6Q0xyEm2MDDGRgsGf0Nl+enSmmOYKFPTaCmXCZa+SIEcaR8n96WopNWmdbQttHeqwzLACaab5wlb2eKfNLx7UUoIIftlBY44UuMD1k3VFNgcfLE/SU2ZyBynmF/tuZWYcm2h4d5YkQVVczO7PG5stSTpvtxLF4v41J9Eg1iWq2bOfkPKck1SmqvP5iha+UT3FRPdVviOfJn+/v70+LxVFMWG3ZLoZtjtmqxcxxRpn9bcXWNrPuM9qmJOczxxRpdsgD+z1pF9XsUJfPAgxg/pVr37CICs/+1ugLdDHKSm/w2XHTIRkOjWA27lbDNzUeMQHWzinWWcg8yBs8hAzRD0Dg0HXHA/SlKk+NAG6OH/BMcjyvPlDDqXEm4ZIQQM2xayAWxbRrxXdzIZ6ZfIyb0CLsxb6Bs2cAYyq1kAJF+VHEUi30RXhR0pMQQMzRXvKFLfsBrpiRT1915axFJgRAEwhfzffpSWZxlK6+OTrXWVq9GvctGK89CwnsB0AL7rFyDwR5GUuIGdEfhoBvjgE/JYnL3Aao6FmdAGiWf5QF7xqPmIe1z8PUXbTuyPdIY+tqOuaUsZX6MEBJ3S0I+L1jgBuf0HD/1Gk+4n+CF0fjC9RE5Oci4Jsj5qcEtid8kI25sdrRV7T0AGgT3HOf/uc2y1M1983R81PiK4b9u1cLPyGoHD88Z2UHKXUx3ydEAyLtjIBvjuKCcO31Ln3qBnkppFh83MsJWbvp76wTsbssAuhUBi4lbWB9UXSIvM9brh2Uil+Exk9KQZfbLmdNJW6MQC4XCjA/OCs3+8G/MdKkWgICaO+YUG5BlnTPqwVMKestEchgjus+97dEm5SaQQCZysyUoGRC4GMI/B+YoO5Zx/ysaQAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAM8AAAAtCAIAAACGb6iBAAAAA3NCSVQICAjb4U/gAAAF20lEQVR4Xu1bi7XjJhBFOWlhm4AiXppARSRFCBeRLQKK2NcEFLFbhHJH6IckMI4tr/GDo+NjDzAMw9V8ADfOOcbYz58/Pz4+8KWWqoHzNPDHeawr56qBjQYq2ioknqeBirbn6bqO9KXR5pRohKK49XeUtmHmqeOa9tI049NmDP149bwa2kzb5CgCq3TY8pAYW1KjLkJbxX29Y6JhjX8Ey4Ggaal9atmSPHXPZEy0he4hkqmTNDupu77vdGTQ/UBcWS0uKjXB9IC72ldD207A0whOKSPlrPpWMNWzfnisZOIq4AxrLRuRGhHyZp4RPr+PDAUZ9Tjrv0abaZVQvzZTyyfGdAJ7M5S2XdktstKeOr06vhle4vmLZ5jZMtadrJ2aBlu5TaeNW4GNrS0NV0w6ZscJHdvLtmWdYSI26YEe4wkf6o3o/zIb3ggJ8d27xdHsGTN5ye8rdLj2Ftd5MBmoyBmdY+kPOu9J2G9D+fz87Klo2TGGR+vhpy/5xFWnpTPjncUv28EQSM8X1twTMeBEm8YKfi8NqeXY57BljDg4jnFYiDB+o5mGAweiAya8J6GpHLS0Hbwg1UnWrzUVMNn8CHje2DdgpaViTDH+YxDQ0lLZHxwUCQLMMmrH5dNy/rImUvdZDymRh7qD6V/tE2uw8aRSq75Xvf2mGtU0yr83+cQ9mI0xUg2hEVdqclvO2pHIyFSb+CsOpUyBFb1lbrI3+4ESFN6NI1MgEolagu6wW1jRqJd0TF6woIkRD6qu8DzokSZJ9dcgIEcw4DRt0UsJAv1kzHmVSr1ECjMxzfbc2j/PZX/M3TpnkBtNlWuV7DoEfizZctd1IggRBc6uD+J6wYRmWgYDw00NTYF+TVGdzgnwJ+YLz91wjyFYR/EPediAH9xo4kV+zNC3cdnYNkRpMGmN+KVg4XrlLUE+8XBsa7duX/DFo3lbfdhx0GBrBz+cbhbrnqBDhp1RNawR8EeAGjoe+lyqgR3x2ahPSK9sZAQ8E/LcUyX4t0HgDimnfyCnaQlqvPs7kYdmDAolcZ4OTzO4jE02WYLi/5An7RcjAqhlEg8HXaJMygHHJlyIJdMBoEJPukcndVt1nwc6bHlI3MvGWxnCDbBA4G/ZtCOy7zJSEID51BWfAN86FdgiL5vnwPo4HYnKsVTwlsN6G/U5vtYGSBtrhQAQR8fqSR6a1pI5vF4IbLLN9w1XOIZZQiy8u4c+hkq861aB+ZAzDGUTr04VS2Dvm4XdSZ5NSy/ijpgIcoMqxPssfKbwP8FhmyVskoY4TxJ2m2FA9CANiuncZwnbMJ/iSDU+lC6QgoaMAc+/HFn2khnM9Ou5QmruMfkSdPiFdU6aaHl/1YNFv18ggmbWAt8/1AGHEG0kyxZBB52eSXq8ehpgDcbjzBtHcJqC0lI4CiMpoa4FGkDqgNjq2v7wm6nqCTmpbHEm1FCKruE9amHMh3dSxzdZ3lRLT7Btb6q5Oq3bNfB1z0lv11Xtca8GKtru1WDtn6+BEG3zCTgOzK9d/PLH4MNxe/zkKV+Q2vILaCDc3RUOO7u+WGlEHHCA5bTJj73+Nt7wC6iwTjFbA2u00SHgnDTSIXr0FBzXdXDfxu+6c2U69sBLKdmi14bFaSAet6UOyHCsvjrqxkFUFJfFKaQKfKIGYvttdHoJW3ftgMzv2NZdtBNX6J1YH9k2yhVanDZnbPsHzved9FLncoYGdmiDtRIGx7pJqOG6zuqqBS5HPu5SyhmTrDxfRAMh2ujOC3LM+X9Is5CbyzC4rsMu0t9/dwo3WR94KeVFFFPFOEED4Q4I7Zy5y/j/lNROmv/z19BQrP8md4KEleX7aKCek77PWr7+THZx2+uLXCUsVgMVbcUuXYGCV7QVuGjFilzRVuzSFSh4RVuBi1asyBVtxS5dgYJXtBW4aMWKXNFW7NIVKHhFW4GLVqzIFW3FLl2Bgle0FbhoxYpc0Vbs0hUoeEVbgYtWrMgVbcUuXYGCV7QVuGjFivwf0Chrf8yUIK8AAAAASUVORK5CYII=" alt="" />
----------------------------------------------------------
类内建是对象的获取,内建是获取XX中的XXX方法结果