[BZOJ 3218] A + B Problem 【可持久化线段树 + 网络流】

时间:2023-03-09 03:13:32
[BZOJ 3218] A + B Problem 【可持久化线段树 + 网络流】

题目连接:BZOJ - 3218

题目分析

题目要求将 n 个点染成黑色或白色,那么我们可以转化为一个最小割模型。

我们规定一个点 i 最后属于 S 集表示染成黑色,属于 T 集表示染成白色,那么对于每个点 i 就要连边 (S, i, B[i]) 和 (i, T, W[i])。

这样,如果一个点属于 S 集,就要割掉与 T 相连的边,就相当于失去了染成白色的收益。

我们再来考虑 “奇怪的点”,一个点 i 变成奇怪的点的条件是:i 是黑色且存在一个白色点 j 满足 j < i && L[i] <= A[j] <= R[i]。

对于这一点,我们可以对于每个点 i 再添加一个点 n + i ,连边 (i, n + i, P[i]) ,对于每个符合条件的 j ,连边 (n + i, j, INF) 。

这样,就实现了,只要有 j 是白色,那么 j 与 T 相连,n + i 就一定与 T 相连,而如果 i 是与 S 相连,就一定要割掉 (i -> n + i) 的价值为 P[i] 的边。

然而这样的边数可以达到 n^2 级别,是不能通过全部数据的。

我们可以考虑用线段树优化网络流的连边。

我们建一棵权值线段树(对所有的 L, R, A 离散化后会节省时间和空间),从每个 j 对应的 A[j] 节点向 j 连 INF 边,从线段树节点向这个节点的儿子节点连 INF 边,对于每个 i ,就再线段树中找到对应的 [L[i], R[i]] 区间,从 n + i 向组成这些区间的节点连 INF 边。

然而我们还没有考虑 j < i 的限制,那么使用可持久化线段树就可以了。

需要注意的一点是,对于第 i 个位置,插入 A[i] 时,是依托 i - 1 的线段树版本建立的,如果发现在 i - 1 版本的线段树中已经存在权值为 A[i] 的节点,那么就从 i 版本表示 A[i] 单点的线段树节点(设为Now)向 i - 1 版本的线段树中表示 A[i] 单点的线段树节点 (设为 Last)连边 (Now, Last, INF) 。

代码

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map> using namespace std; const int MaxN = + , MaxNode = + , MaxM = + , INF = ; map<int, int> M; int n, Top, Tot, S, T, HN, Index, Ans;
int A[MaxN], B[MaxN], W[MaxN], L[MaxN], R[MaxN], Pi[MaxN], Arr[MaxN * ];
int Root[MaxN], Son[MaxNode][], d[MaxNode], Num[MaxNode]; struct Edge
{
int u, v, w;
Edge *Next, *Other;
} E[MaxM * ], *P = E, *Point[MaxNode], *Last[MaxNode]; inline void AddEdge(int x, int y, int z)
{
Edge *Q = ++P; ++P;
P -> u = x; P -> v = y; P -> w = z;
P -> Next = Point[x]; Point[x] = P; P -> Other = Q;
Q -> u = y; Q -> v = x; Q -> w = ;
Q -> Next = Point[y]; Point[y] = Q; Q -> Other = P;
} void Insert(int &x, int Lt, int s, int t, int Pos, int Idx)
{
if (x == ) x = ++Index;
if (s == t)
{
AddEdge(Tot + x, Idx, INF);
if (Lt) AddEdge(Tot + x, Tot + Lt, INF);
return;
}
int m = (s + t) >> ;
if (Pos <= m)
{
Son[x][] = Son[Lt][];
Insert(Son[x][], Son[Lt][], s, m, Pos, Idx);
}
else
{
Son[x][] = Son[Lt][];
Insert(Son[x][], Son[Lt][], m + , t, Pos, Idx);
}
if (Son[x][]) AddEdge(Tot + x, Tot + Son[x][], INF);
if (Son[x][]) AddEdge(Tot + x, Tot + Son[x][], INF);
} void Link(int x, int s, int t, int l, int r, int Idx)
{
if (l <= s && r >= t)
{
AddEdge(n + Idx, Tot + x, INF);
return;
}
int m = (s + t) >> ;
if (Son[x][] && l <= m) Link(Son[x][], s, m, l, r, Idx);
if (Son[x][] && r >= m + ) Link(Son[x][], m + , t, l, r, Idx);
} inline int gmin(int a, int b) {return a < b ? a : b;} int DFS(int Now, int Flow)
{
if (Now == T) return Flow;
int ret = ;
for (Edge *j = Last[Now]; j; j = j -> Next)
{
if (j -> w && d[Now] == d[j -> v] + )
{
int p = DFS(j -> v, gmin(j -> w, Flow - ret));
j -> w -= p; j -> Other -> w += p; ret += p;
if (ret == Flow) return ret;
}
}
if (d[S] >= Tot) return ret;
if (--Num[d[Now]] == ) d[S] = Tot;
++Num[++d[Now]];
Last[Now] = Point[Now];
return ret;
} int main()
{
scanf("%d", &n);
Top = ;
for (int i = ; i <= n; ++i)
{
scanf("%d%d%d%d%d%d", &A[i], &B[i], &W[i], &L[i], &R[i], &Pi[i]);
Arr[++Top] = A[i]; Arr[++Top] = L[i]; Arr[++Top] = R[i];
}
sort(Arr + , Arr + Top + );
HN = ;
M.clear();
for (int i = ; i <= Top; ++i)
{
if (i != && Arr[i] == Arr[i - ]) continue;
M[Arr[i]] = ++HN;
}
for (int i = ; i <= n; ++i)
{
A[i] = M[A[i]];
L[i] = M[L[i]]; R[i] = M[R[i]];
}
memset(Root, , sizeof(Root));
S = n * + ; T = n * + ;
Tot = n * + ;
Index = ;
Ans = ;
for (int i = ; i <= n; ++i)
{
AddEdge(S, i, B[i]);
AddEdge(i, T, W[i]);
AddEdge(i, n + i, Pi[i]);
Ans += B[i] + W[i];
}
for (int i = ; i <= n; ++i)
{
if (i > ) Link(Root[i - ], , HN, L[i], R[i], i);
Insert(Root[i], Root[i - ], , HN, A[i], i);
}
Tot = Tot + Index;
memset(d, , sizeof(d));
memset(Num, , sizeof(Num)); Num[] = Tot;
for (int i = ; i <= Tot; ++i) Last[i] = Point[i];
while (d[S] < Tot) Ans -= DFS(S, INF);
printf("%d\n", Ans);
return ;
}