A program test:
You are given N round clocks.
Every clock has M hands, and these hands can point to positions 1, 2, 3, ..., P (yes, these represent numbers around each face). The clocks are represented by the matrix A consisting of N rows and M columns of integers. The first row represents the hands of the first clock, and so on.
For example, you are given matrix A consisting of five rows and two columns, and P = 4:
A[0][0] = 1 A[0][1] = 2
A[1][0] = 2 A[1][1] = 4
A[2][0] = 4 A[2][1] = 3
A[3][0] = 2 A[3][1] = 3
A[4][0] = 1 A[4][1] = 3
You can rotate the clocks to obtain several clocks that look identical. For example, if you rotate the third, fourth and fifth clocks you can obtain the following clocks:
After rotation, you have four pairs of clocks that look the same: (1, 3), (1, 4), (2, 5) and (3, 4).
type TMatrix = array of array of longint;
Write a function:
int solution(int **A, int N, int M, int P);
int solution(NSMutableArray *A, int P);
int solution(const vector< vector<int> > &A, int P);
class Solution { int solution(int[][] A, int P); }
class Solution { public int solution(int[][] A, int P); }
object Solution { def solution(A: Array[Array[Int]], P: Int): Int }
function solution(A, P);
function solution(A, P)
function solution($A, $P);
function solution(A: TMatrix; N: longint; M: longint; P: longint): longint;
def solution(A, P)
sub solution { my ($A, $P)=@_; my @A=@$A; ... }
def solution(a, p)
Private Function solution ( A As Integer()(), P As Integer ) as Integer
that, given a zero-indexed matrix A consisting of N rows and M columns of integers and integer P, returns the maximal number of pairs of clocks that can look the same after rotation.
For example, given the following array A and P = 4:
A[0][0] = 1 A[0][1] = 2
A[1][0] = 2 A[1][1] = 4
A[2][0] = 4 A[2][1] = 3
A[3][0] = 2 A[3][1] = 3
A[4][0] = 1 A[4][1] = 3
the function should return 4, as explained above.
Assume that:
- N is an integer within the range [1..500];
- M is an integer within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.
Complexity:
- expected worst-case time complexity is O(N*M*log(M)+N*log(N));
- expected worst-case space complexity is O(N*M).
Here is my solution:
class Program
{
static void Main(string[] args)
{
int[][] Testcase = new int[][] { new int[] { , , , }, new int[] { , , , },
new int[] { , , , }, new int[]{ , , , },
new int[]{ , , , }, new int[]{ , , , } };
//result should be 7
Console.WriteLine(new Solution().solution(Testcase, ));
}
} class Solution
{
public int solution(int[][] A, int P)
{
int result = ;
int hands = A[].Length; Dictionary<int[], int> buckets = new Dictionary<int[], int>();
buckets.Add (A[],); //fill the buckets
bool flgFind = false;
foreach(int[] oneClock in A)
{
flgFind = false;
foreach(int[] bucket in buckets.Keys)
{
if (CanbeRotatedToEqual(oneClock, bucket,P) == true)
{
buckets[bucket] += ;
flgFind = true;
break;
}
}
if(flgFind == false)
buckets.Add(oneClock, ); } //calculate the total pairs
foreach (int k in buckets.Values)
result += k * (k - ) / ; return result; } bool CanbeRotatedToEqual(int[] source, int[] target, int P)
{
bool flgJ = false;
int hands = source.Length;
for (int i = ; i < hands; i++)
{
int subValue = target[] - source[i]; flgJ = false;
for (int j = ; j < hands; j++)
{
int newS = source[(i + j) % hands] + subValue;
if (newS <= )
newS += P;
if (newS != target[j])
{
flgJ = true;
break;
}
}
//When flgJ is still false, that means after the source clock rotates subValue steps,
//it is identical with the target one.
if (flgJ == false)
return true;
}
//if this loop end normally, that means the source clock cannot rotate to the target one.
return false;
}
}
2013/8/18: This is not valid version.