【题目描述】
一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=<x1,x2,…,xm>X=<x1,x2,…,xm>,则另一序列Z=<z1,z2,…,zk>Z=<z1,z2,…,zk>是X的子序列是指存在一个严格递增的下标序列<i1,i2,…,ik><i1,i2,…,ik>,使得对于所有j=1,2,…,k有:
Xij=ZjXij=Zj
例如,序列Z=<B,C,D,B>是序列X=<A,B,C,B,D,A,B>的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X=<A,B,C,B,D,A,B>和Y=<B,D,C,A,B,A>,则序列<B,C,A>是X和Y的一个公共子序列,序列 <B,C,B,A>也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列.因为X和Y没有长度大于4的公共子序列。
给定两个序列X=<x1,x2,…,xm>X=<x1,x2,…,xm>和Y=<y1,y2….yn>Y=<y1,y2….yn>.要求找出X和Y的一个最长公共子序列。
【输入】
共有两行。每行为一个由大写字母构成的长度不超过1000的字符串,表示序列X和Y。
【输出】
第一行为一个非负整数。表示所求得的最长公共子序列的长度。若不存在公共子序列.则输出文件仅有一行输出一个整数0。
【输入样例】
ABCBDAB
BDCABA
【输出样例】
【提示】
最长公共子串(Longest Common Substirng)和最长公共子序列(Longest Common Subsequence,LCS)的区别为:子串是串的一个连续的部分,子序列则是从不改变序列的顺序,而从序列中去掉任意的元素而获得新的序列;也就是说,子串中字符的位置必须是连续的,子序列则可以不必连续。字符串长度小于等于1000。
【来源】
【思路】:和前面的一样(可以看我以前的博客)
只是f[i][j]表示s1的前i项,和s2d的前j项的最长长度,然后分情况讨论见代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
using namespace std;
const int maxn=;
const int minn=-;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int f[][];
string s,t;
int main()
{
cin>>s>>t;
int lens=s.size();
int lent=t.size();
for(int i=;i<=lens;++i)
{
for(int j=;j<=lent;++j)
{
f[i][j]=max(f[i-][j],f[i][j-]);
if(s[i-]==t[j-])
{
f[i][j]=max(f[i][j],f[i-][j-]+);
}
}
}
cout<<f[lens][lent];
return ;
}