题目链接:http://poj.org/problem?id=1847
Dijkstra算法的模版应用
题意:给你N个点和起点终点,点与点有铁路,接下来的N行分别为点i的情况 第一个数字表示与该点连通的点的个数,接下来给该行的Ki个点,注意第一个所连的点为默认,通过的话不用改扳手,其余的点通过的话要改一次扳手,求从起点到终点改扳手的最小次数。
将不需要手动换方向转变为路径长度为0,
将需要手动换方向转变为路径长度为1即可
注意:
从第二行开始
每一行的第2个数为下一个默认的进入方向,所以不用手动换方向
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
#define INF 100100100
#define maxn 110
int n,A,B;
int G[maxn][maxn];
int dis[maxn*];
int s[maxn*];
void Dijkstra()
{
for(int i=;i<=n;i++)
{
dis[i]=G[A][i];
s[i]=;
}
s[A]=;
dis[A]=;
for(int i=;i<n;i++)
{
int Min=INF,u=A;
for(int j=;j<=n;j++)
{
if(dis[j]<INF && s[j]== && Min>dis[j])
{
u=j;
Min=dis[j];
}
}
if(Min>INF) break;
s[u]=; for(int k=;k<=n;k++)
{
if(s[k]== && G[u][k]<INF && dis[k]>dis[u]+G[u][k])
dis[k]=dis[u]+G[u][k];
}
}
}
int main()
{
while(scanf("%d%d%d",&n,&A,&B)!=EOF)
{
int num;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i==j) G[i][j]=;
else G[i][j]=INF;
for(int i=;i<=n;i++)
{
scanf("%d",&num);
int k,w;
for(int j=;j<=num;j++)
{
scanf("%d",&k);
w=;
if(j==) w=;
G[i][k]=w;
}
}
Dijkstra();
if(dis[B]>=INF)
cout<<"-1"<<endl;
else
cout<<dis[B]<<endl;
}
return ; }