Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 49267 | Accepted: 18035 |
Description

9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
Output
For
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
题解,错了半天,while出错,改成for循环就对了,至今不知道为啥。。。
代码:
#include<stdio.h>
const int MAXN=;
int a[MAXN],b[MAXN];
long long ans;
void mergesort(int start,int mid,int end){
int i=start,k=start,j=mid+;
while(i<=mid&&j<=end){
if(a[i]<=a[j])b[k++]=a[i++];
else{
ans+=j-k;
b[k++]=a[j++];
}
}
while(i<=mid)b[k++]=a[i++];
while(j<=end)b[k++]=a[j++];
//while(start<=end)a[start++]=b[start];
for(int i=start;i<=end;i++)a[i]=b[i];
}
void ms(int l,int r){
if(l<r){
int mid=(l+r)/;
ms(l,mid);
ms(mid+,r);
mergesort(l,mid,r);
}
}
int main(){
int n;
while(scanf("%d",&n),n){
ans=;
for(int i=;i<=n;i++)scanf("%d",a+i);
ms(,n);
printf("%lld\n",ans);
}
return ;
}