题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全*这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
算法分析:咋一看,艾玛,最小割的水题,dinic()果断敲上A啊,想想时间复杂度不对啊,n和m都是1000的,O(n^2m)要跪的。上网看了别人的博客,学习到了s-t平面图的最小割的解法,把原图中的面看作点,起点和终点都等同于最外面的那一个面,原图中一条边权值为w,新图中就等同于此边在平面图中分割开的两个面(即新图中两个点)连一条边,权值为w。建模完成后,新图中的起点和终点的一条路径就穿插过原图的一些边,即一条路径等于原图中的一个割,所以最小割就等于新图的最短路径长度。确实很厉害。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#define inf 0x7fffffff
using namespace std;
const int maxn=+;
const int M = maxn*+; int n,m,nn,mm;
int from,to;
struct Edge
{
int v,flow;
int next;
}edge[M];
int head[maxn],edgenum; void add(int u,int v,int flow)
{
edge[edgenum].v=v ;edge[edgenum].flow=flow ;
edge[edgenum].next=head[u] ;head[u]=edgenum++ ; edge[edgenum].v=u ;edge[edgenum].flow=flow ;
edge[edgenum].next=head[v] ;head[v]=edgenum++ ;
} struct node
{
int v,w;
friend bool operator < (node a,node b)
{
return a.w > b.w;
}
}cur,tail;
int d[maxn],vis[maxn];
void Dijkstra(int from,int to)
{
for (int i= ;i<maxn ;i++) d[i]=inf;
memset(vis,,sizeof(vis));
d[from]=;
priority_queue<node> Q;
cur.v=from ;cur.w= ;
Q.push(cur);
while (!Q.empty())
{
cur=Q.top() ;Q.pop() ;
int x=cur.v;
if (vis[x]) continue;
vis[x]=;
for (int i=head[x] ;i!=- ;i=edge[i].next)
{
if (d[edge[i].v ]>d[x]+edge[i].flow)
{
d[edge[i].v ]=d[x]+edge[i].flow;
tail.v=edge[i].v;
tail.w=d[edge[i].v ];
Q.push(tail);
}
}
}
printf("%d\n",d[to]);
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
memset(head,-,sizeof(head));
edgenum=;
from=;
to=*(n-)*(m-)+;
int x,y,cost;
for (int i= ;i<=n ;i++)
{
for (int j= ;j<m ;j++)
{
scanf("%d",&cost);
x= i== ? from : (*(i-)-)*(m-)+j;
y= i==n ? to : (*(i-))*(m-)+j;
add(x,y,cost);
}
}
for (int i= ;i<n ;i++)
{
for (int j= ;j<=m ;j++)
{
scanf("%d",&cost);
x= j== ? to : (*(i-))*(m-)+j-;
y= j==m ? from : (*(i-))*(m-)+j-+m;
add(x,y,cost);
}
}
for (int i= ;i<n ;i++)
{
for (int j= ;j<m ;j++)
{
scanf("%d",&cost);
x=(*(i-))*(m-)+j;
y=(*(i-)+)*(m-)+j;
add(x,y,cost);
}
}
Dijkstra(from,to);
}
return ;
}