高通 sensor 从native到HAL

时间:2023-03-09 02:16:03
高通 sensor 从native到HAL

app注册传感器监听

Android Sensor Framework 的整体架构如下图所示:

高通 sensor 从native到HAL

前几篇sensor相关的文章介绍了sensor的hal的知识,以press_sensor实时显示气压坐标来分析,app层数据获取的过程,其实实现数据监控非常简单,主要分为下面三个步骤:

  • 获取Sensor服务:getSystemService;
  • 获取具体Sensor对象:getDefaultSensor;
  • 注册数据监听器:registerListener;

SensorService启动

开机后,system server启动时,就会初始化sensor service,也就是说,开机后她一直都在后台运行着,客户端部分,直接connect就行了。至于怎么connect,这一切都被封装到SensorManager里了。

SensorService服务启动后,在随后的第一次被强引用时,其onFirstRef会被调用,紧接着,它会获取我们的SensorDevice实例:

void SensorService::onFirstRef() {
ALOGD("nuSensorService starting...");
SensorDevice& dev(SensorDevice::getInstance()); sHmacGlobalKeyIsValid = initializeHmacKey(); if (dev.initCheck() == NO_ERROR) {
sensor_t const* list;
ssize_t count = dev.getSensorList(&list);
if (count > 0) {

附上这部分的流程

高通 sensor 从native到HAL

SensorDevice作为Sensor架构中native的最后一个文件,与Hal层进行通信,故而在SensorDevice的构造方法中,我们就可以看到著名的hw_get_module和sensors_open_1方法了:

SensorDevice::SensorDevice()
: mSensorDevice(0),
mSensorModule(0) {
status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
(hw_module_t const**)&mSensorModule); ALOGE_IF(err, "couldn't load %s module (%s)",
SENSORS_HARDWARE_MODULE_ID, strerror(-err)); if (mSensorModule) {
err = sensors_open_1(&mSensorModule->common, &mSensorDevice); ALOGE_IF(err, "couldn't open device for module %s (%s)",
SENSORS_HARDWARE_MODULE_ID, strerror(-err)); if (mSensorDevice) {
if (mSensorDevice->common.version == SENSORS_DEVICE_API_VERSION_1_1 ||
mSensorDevice->common.version == SENSORS_DEVICE_API_VERSION_1_2) {
ALOGE(">>>> WARNING <<< Upgrade sensor HAL to version 1_3");
} sensor_t const* list;
ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
mActivationCount.setCapacity(count);
Info model;
for (size_t i=0 ; i<size_t(count) ; i++) {
mActivationCount.add(list[i].handle, model);
mSensorDevice->activate(
reinterpret_cast<struct sensors_poll_device_t *>(mSensorDevice),
list[i].handle, 0);
}
}
}
}

其中SENSORS_HARDWARE_MODULE_ID是在hardware/sensors.h中定义的module名字:

/**
* The id of this module
*/
#define SENSORS_HARDWARE_MODULE_ID "sensors"

而mSensorModule就是我们的sensors_module_t结构体,这些都是在hal层sensors.h中定义的:

/**
* Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
* and the fields of this data structure must begin with hw_module_t
* followed by module specific information.
*/
struct sensors_module_t {
struct hw_module_t common; /**
* Enumerate all available sensors. The list is returned in "list".
* @return number of sensors in the list
*/
int (*get_sensors_list)(struct sensors_module_t* module,
struct sensor_t const** list); /**
* Place the module in a specific mode. The following modes are defined
*
* 0 - Normal operation. Default state of the module.
* 1 - Loopback mode. Data is injected for the supported
* sensors by the sensor service in this mode.
* @return 0 on success
* -EINVAL if requested mode is not supported
* -EPERM if operation is not allowed
*/
int (*set_operation_mode)(unsigned int mode);
};

可以看到sensors_module_t结构体扩展了hw_module_t,它里面额外提供了get_sensor_list方法来获取系统支持的sensor列表以及一个模式设置方法。

接下来,我们跟进hw_get_module方法,看看它到底做了什么?

hw_get_module

该函数具体实现在hardware/libhardware/hardware.c中

int hw_get_module(const char *id, const struct hw_module_t **module)
{
return hw_get_module_by_class(id, NULL, module);
}
int hw_get_module_by_class(const char *class_id, const char *inst,
const struct hw_module_t **module)
{
int i = 0;
char prop[PATH_MAX] = {0};
char path[PATH_MAX] = {0};
char name[PATH_MAX] = {0};
char prop_name[PATH_MAX] = {0}; if (inst)
snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
else
strlcpy(name, class_id, PATH_MAX); /*
* Here we rely on the fact that calling dlopen multiple times on
* the same .so will simply increment a refcount (and not load
* a new copy of the library).
* We also assume that dlopen() is thread-safe.
*/ /* First try a property specific to the class and possibly instance */
snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);
if (property_get(prop_name, prop, NULL) > 0) {
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
goto found;
}
} /* Loop through the configuration variants looking for a module */
for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
if (property_get(variant_keys[i], prop, NULL) == 0) {
continue;
}
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
goto found;
}
} /* Nothing found, try the default */
if (hw_module_exists(path, sizeof(path), name, "default") == 0) {
goto found;
} return -ENOENT; found:
/* load the module, if this fails, we're doomed, and we should not try
* to load a different variant. */
return load(class_id, path, module);
}

我们主要看hw_get_module_by_class,这里传入的参数分别是“sensors”,null,以及我们的mSensorModule结构体。

首先将字符串拷贝给name:

strlcpy(name, class_id, PATH_MAX);

接着拼接prop_name为ro.hardware.name,即prop_name=ro.hardware.sensors

通过property_get方法并没有得到这个值的定义(因为在系统中并没有对其定义),所以接下来会进入下面的循环:

for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
if (property_get(variant_keys[i], prop, NULL) == 0) {
continue;
}
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
goto found;
}
}
/**
* There are a set of variant filename for modules. The form of the filename
* is "<MODULE_ID>.variant.so" so for the led module the Dream variants
* of base "ro.product.board", "ro.board.platform" and "ro.arch" would be:
*
* led.trout.so
* led.msm7k.so
* led.ARMV6.so
* led.default.so
*/ static const char *variant_keys[] = {
"ro.hardware", /* This goes first so that it can pick up a different
file on the emulator. */
"ro.product.board",
"ro.board.platform",
"ro.arch"
};

根据上面的解析我门也可以看到,将会分别查找sensors.variant.sosensors.product.sosensors.platform.so,以及sensors.default.so,最终我们会在/system/lib/hw/路径下找到sensors.msm8909.so,然后将其通过load方法加载进内存中运行。由此也可知,我分析的是高通8909平台。

小细节:当我们实现了自己的HAL层module,并且写了一个应用程序测试module是否正常工作,那么在编译的时候,下面的参数应该要这样写:

LOCAL_MODULE := moduleName.default

或者

LOCAL_MODULE := moduleName.$(TARGET_BOARD_PLATFORM)

由于上面源码的原因,如果module名字对应不到,你的这个模块将不会被正常的load进去,因而也就无法正常工作了。

接着我们分析load的实现。

static int load(const char *id,
const char *path,
const struct hw_module_t **pHmi)
{
int status = -EINVAL;
void *handle = NULL;
struct hw_module_t *hmi = NULL; /*
* load the symbols resolving undefined symbols before
* dlopen returns. Since RTLD_GLOBAL is not or'd in with
* RTLD_NOW the external symbols will not be global
*/
handle = dlopen(path, RTLD_NOW);
if (handle == NULL) {
char const *err_str = dlerror();
ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
status = -EINVAL;
goto done;
} /* Get the address of the struct hal_module_info. */
const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
hmi = (struct hw_module_t *)dlsym(handle, sym);
if (hmi == NULL) {
ALOGE("load: couldn't find symbol %s", sym);
status = -EINVAL;
goto done;
} /* Check that the id matches */
if (strcmp(id, hmi->id) != 0) {
ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
status = -EINVAL;
goto done;
} hmi->dso = handle; /* success */
status = 0; done:
if (status != 0) {
hmi = NULL;
if (handle != NULL) {
dlclose(handle);
handle = NULL;
}
} else {
ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
id, path, *pHmi, handle);
} *pHmi = hmi; return status;
}
  1. 首先通过dlopen打开sensors.xxx.so模块,获得其句柄handle
  2. 调用dlsym去获取结构体hw_module_t结构体的地址,注意这里传入的字符串为HAL_MODULE_INFO_SYM_AS_STR,定义在hardware.h头文件中
/**
* Name of the hal_module_info
*/
#define HAL_MODULE_INFO_SYM HMI /**
* Name of the hal_module_info as a string
*/
#define HAL_MODULE_INFO_SYM_AS_STR "HMI"

这里为什么要去取名字为HMI的地址,我猜想它应该是HAL模块的入口了。

ELF文件格式:

ELF = Executable and Linkable Format,可执行连接格式,是UNIX系统实验室(USL)作为应用程序二进制接口(Application Binary Interface,ABI)而开发和发布的,扩展名为elf。一个ELF头在文件的开始,保存了路线图(road map),描述了该文件的组织情况。sections保存着object 文件的信息,从连接角度看:包括指令,数据,符号表,重定位信息等等。通过file命令我们可知sensors.xx.so是一个ELF文件格式

tiny.hui@build-server:~$ file sensors.msm8909.so
sensors.msm8909.so: ELF 32-bit LSB shared object, ARM, version 1 (SYSV), dynamically linked (uses shared libs), BuildID[md5/uuid]=0x25812b01ab4700281b41f61327075611, not stripped

因此,通过linux的readelf命令我们可以查看该文件的内部布局及符号表等信息。

tiny.hui@build-server:~$ readelf -s sensors.msm8909.so

Symbol table '.dynsym' contains 157 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 FUNC GLOBAL DEFAULT UND __cxa_finalize@LIBC (2)
2: 00000000 0 FUNC GLOBAL DEFAULT UND __cxa_atexit@LIBC (2)
3: 00000000 0 FUNC GLOBAL DEFAULT UND __register_atfork@LIBC (2)
4: 00000000 0 FUNC GLOBAL DEFAULT UND pthread_mutex_lock@LIBC (2)
        …………………………// 省略无关信息
179: 0000c179 120 FUNC GLOBAL DEFAULT 13 _ZN19NativeSensorManager1
180: 0000bd21 392 FUNC GLOBAL DEFAULT 13 _ZN19NativeSensorManager2
181: 0000a45b 114 FUNC GLOBAL DEFAULT 13 _ZN24InputEventCircularRe
182: 000064d9 148 FUNC GLOBAL DEFAULT 13 _ZN22sensors_poll_context
183: 0000d889 6 FUNC GLOBAL DEFAULT 13 _ZN11sensors_XMLC1Ev
184: 0000663d 156 FUNC GLOBAL DEFAULT 13 _ZN10SensorBaseC2EPKcS1_P
185: 000086d5 248 FUNC GLOBAL DEFAULT 13 _ZN11AccelSensorC1Ev
186: 000088dd 248 FUNC GLOBAL DEFAULT 13 _ZN11AccelSensorC2EP13Sen
187: 00014220 4 OBJECT GLOBAL DEFAULT 23 _ZN7android9SingletonI11s
188: 0000a53b 46 FUNC GLOBAL DEFAULT 13 _ZN18CalibrationManager10
189: 00007775 56 FUNC GLOBAL DEFAULT 13 _ZN15ProximitySensorD1Ev
190: 00014008 136 OBJECT GLOBAL DEFAULT 22 HMI
191: 0000721d 26 FUNC GLOBAL DEFAULT 13 _ZNK11AccelSensor16hasPen
192: 0000d475 16 FUNC WEAK DEFAULT 13 _ZNK7android12SortedVecto
193: 00006dd9 264 FUNC GLOBAL DEFAULT 13 _ZN11LightSensorC2EPc
194: 00006181 48 FUNC GLOBAL DEFAULT 13 _ZN22sensors_poll_context
195: 0000d4fd 48 FUNC GLOBAL DEFAULT 13 _ZN13VirtualSensorD1Ev
196: 0000aa15 80 FUNC GLOBAL DEFAULT 13 _ZN18CalibrationManagerD2
197: 000087cd 272 FUNC GLOBAL DEFAULT 13 _ZN11AccelSensorC1EPc

由符号表可知,HMI的地址为00014008,拿到函数地址,当然就可以执行对应的代码了。

QualComm Sensor HAL

因此我们接着看sensor_hal层,高通的Sensor实现了自己的HAL,其源码在hardware\qcom\sensors路径下,通过Android.mk我们也可以确定他确实是我们前面load方法打开的动态链接库,其编译后会生成sensor.msm8909.so

ifneq ($(filter msm8960 msm8610 msm8916 msm8909,$(TARGET_BOARD_PLATFORM)),)
# Exclude SSC targets
ifneq ($(TARGET_USES_SSC),true)
# Disable temporarily for compilling error
ifneq ($(BUILD_TINY_ANDROID),true)
LOCAL_PATH := $(call my-dir) # HAL module implemenation stored in
include $(CLEAR_VARS) ifeq ($(USE_SENSOR_MULTI_HAL),true)
LOCAL_MODULE := sensors.native
else
ifneq ($(filter msm8610,$(TARGET_BOARD_PLATFORM)),)
LOCAL_MODULE := sensors.$(TARGET_BOARD_PLATFORM)
LOCAL_CFLAGS := -DTARGET_8610
else
ifneq ($(filter msm8916 msm8909,$(TARGET_BOARD_PLATFORM)),)
LOCAL_MODULE := sensors.$(TARGET_BOARD_PLATFORM)
else
LOCAL_MODULE := sensors.msm8960
endif
endif ifdef TARGET_2ND_ARCH
LOCAL_MODULE_RELATIVE_PATH := hw
else
LOCAL_MODULE_PATH := $(TARGET_OUT_SHARED_LIBRARIES)/hw
endif
endif LOCAL_MODULE_TAGS := optional LOCAL_CFLAGS += -DLOG_TAG=\"Sensors\"
ifeq ($(call is-board-platform,msm8960),true)
LOCAL_CFLAGS += -DTARGET_8930
endif LOCAL_C_INCLUDES := $(TARGET_OUT_INTERMEDIATES)/KERNEL_OBJ/usr/include
LOCAL_ADDITIONAL_DEPENDENCIES := $(TARGET_OUT_INTERMEDIATES)/KERNEL_OBJ/usr # Export calibration library needed dependency headers
LOCAL_COPY_HEADERS_TO := sensors/inc
LOCAL_COPY_HEADERS := \
CalibrationModule.h \
sensors_extension.h \
sensors.h LOCAL_SRC_FILES := \
sensors.cpp \
SensorBase.cpp \
LightSensor.cpp \
ProximitySensor.cpp \
CompassSensor.cpp \
Accelerometer.cpp \
Gyroscope.cpp \
Bmp180.cpp \
InputEventReader.cpp \
CalibrationManager.cpp \
NativeSensorManager.cpp \
VirtualSensor.cpp \
sensors_XML.cpp \
SignificantMotion.cpp LOCAL_C_INCLUDES += external/libxml2/include \ ifeq ($(call is-platform-sdk-version-at-least,20),true)
LOCAL_C_INCLUDES += external/icu/icu4c/source/common
else
LOCAL_C_INCLUDES += external/icu4c/common
endif LOCAL_SHARED_LIBRARIES := liblog libcutils libdl libxml2 libutils include $(BUILD_SHARED_LIBRARY) include $(CLEAR_VARS) LOCAL_MODULE := libcalmodule_common
LOCAL_SRC_FILES := \
algo/common/common_wrapper.c \
algo/common/compass/AKFS_AOC.c \
algo/common/compass/AKFS_Device.c \
algo/common/compass/AKFS_Direction.c \
algo/common/compass/AKFS_VNorm.c LOCAL_SHARED_LIBRARIES := liblog libcutils
LOCAL_MODULE_TAGS := optional ifdef TARGET_2ND_ARCH
LOCAL_MODULE_PATH_32 := $(TARGET_OUT_VENDOR)/lib
LOCAL_MODULE_PATH_64 := $(TARGET_OUT_VENDOR)/lib64
else
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR_SHARED_LIBRARIES)
endif include $(BUILD_SHARED_LIBRARY) include $(CLEAR_VARS) LOCAL_MODULE := calmodule.cfg
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE_CLASS := ETC
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR_ETC)
LOCAL_SRC_FILES := calmodule.cfg include $(BUILD_PREBUILT) endif #BUILD_TINY_ANDROID
endif #TARGET_USES_SSC
endif #TARGET_BOARD_PLATFORM

那么HMI的入口到底定义在这里的那个文件中呢?

功夫不负有心人,在sensors.cpp中,我们终于找到了HMI的入口,即下面的结构体:

static struct hw_module_methods_t sensors_module_methods = {
.open = sensors_open
}; struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.module_api_version = (uint16_t)SENSORS_DEVICE_API_VERSION_1_3,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "QTI Sensors Module",
.author = "Qualcomm Technologies, Inc.",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = sensors_get_sensors_list,
.set_operation_mode = sensors_set_operation_mode
};

HAL_MODULE_INFO_SYM即上文提到的HMI变量,恭喜各位,这里我们就开启了QualComm Sensor HAL的大门。

最后这个hw_module_t的结构体句柄会返回给我们的SensorDevice的构造函数里:

SensorDevice::SensorDevice()
: mSensorDevice(0),
mSensorModule(0)
{
status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
(hw_module_t const**)&mSensorModule); ALOGE_IF(err, "couldn't load %s module (%s)",
SENSORS_HARDWARE_MODULE_ID, strerror(-err)); if (mSensorModule) {
err = sensors_open_1(&mSensorModule->common, &mSensorDevice);

接着,通过sensors_open_1方法将module->common传入,打开我们的sensor驱动。

// hardware/libhardware/include/hardware/sensors.h
static inline int sensors_open_1(const struct hw_module_t* module,
sensors_poll_device_1_t** device) {
return module->methods->open(module,
SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
} static inline int sensors_close_1(sensors_poll_device_1_t* device) {
return device->common.close(&device->common);
}

回过头去看看HMI的结构体定义,其中module->common->open被赋值为sensors_module_methods,其只有一个open方法,因此,module->methods->open最终会调用sensors_open方法来打开驱动程序。

到这里native到hal层的逻辑其实已经基本上分析完了。