题目:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
题解:
Solution 1 ()
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = (int) grid.size(), n = (int) grid[].size();
vector<long> dp(n,INT_MAX);
dp[] = grid[][];
for(int i=; i<m; ++i) {
for(int j=; j<n; ++j) {
if(j > )
dp[j] = min(dp[j] + grid[i][j], dp[j-] + grid[i][j]);
else
if(i>) dp[j] = dp[j] + grid[i][j];
}
}
return dp[n-];
}
};
边界的第二种处理方法:因为Solution 1 中dp初始化为最大值,故需要考虑溢出情况,所以用long整型。这个就初始化为int整型。
Solution 2 ()
class Solution {
public:
int minPathSum(vector<vector<int>>& nums) {
int m = (int) nums.size();
int n = (int) nums[].size();
vector<int> v (n,);
for (int i=; i<m; ++i) {
for (int j=; j<n; ++j) {
if (i>)
v[j] = nums[i][j] + ((j>) ? min(v[j], v[j-]) : v[j]);
else
v[j] = nums[i][j] + ((j>) ? v[j-] : );
}
}
return v[n-];
}
};
解法没变,就是边界的处理上不一样,这个是先初始化边界了。
Solution 3 ()
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int dp[grid.size()][grid[].size()]; dp[][] = grid[][];
// init first row
for(int i = ; i < grid[].size(); i ++){
dp[][i] = dp[][i-] + grid[][i];
}
// init first col
for(int i = ; i < grid.size(); i ++){
dp[i][] = dp[i-][] + grid[i][];
}
for(int i = ; i < grid.size(); i ++){
for(int j = ; j < grid[].size(); j++){
dp[i][j] = dp[i - ][j] < dp[i][j-]? dp[i - ][j] + grid[i][j] : dp[i][j-] + grid[i][j];
}
}
return dp[grid.size() - ][grid[].size() -];
}
};