AVL树或者是一棵空树,或者是具有以下性质的非空二叉搜索树:
1. 任一结点的左、右子树均为AVL树;
2.根结点左、右子树高度差的绝对值不超过1.
1.声明
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
typedef int ElementType;
typedef struct AVLNode * AVLTree; //AVL树类型
struct AVLNode{
ElementType Data; //结点数据
AVLTree Left; //左子树
AVLTree Right; //右子树
int Height; //树高
};
2.获取高度
int GetHeight(AVLTree T){
if(T) return max(GetHeight(T->Left ),GetHeight(T->Right )) + ;
else return ;
}
3.左单旋LL
AVLTree SingleLeftRotation(AVLTree A){
// 注意:A 必须有一个左子结点 B
// 将 A 与 B 左单选,更新 A 与 B 的高度,返回新的根结点 B
AVLTree B = A->Left ;
A->Left = B->Right ;
B->Right = A;
A->Height = max(GetHeight(A->Left ), GetHeight(A->Right )) + ;
B->Height = max(GetHeight(B->Left ),A->Height ) + ;
return B;
}
4.右单旋RR
AVLTree SingleRightRotation(AVLTree A){
AVLTree B = A->Right ;
A->Right = B->Left ;
B->Left = A;
A->Height = max(GetHeight(A->Left ), GetHeight(A->Right )) + ;
B->Height = max(GetHeight(B->Right ),A->Height ) + ;
return B;
}
5.左-右双旋LR
AVLTree DoubleLeftRightRotation(AVLTree A){
// 注意:A必须有一个左子结点 B,且 B必须有一个右子结点 C
// 将 A、B 与 C 做两次单旋,返回新的根结点 C //将 B 与 C 做右单旋,C被返回
A->Left = SingleRightRotation(A->Left );
//将 A 与 C 做左单旋,C被返回
return SingleLeftRotation(A);
}
6.右-左双旋RL
AVLTree DoubleRightLeftRotation(AVLTree A){
A->Right = SingleLeftRotation(A->Right );
return SingleRightRotation(A);
}
7.AVL树的插入
AVLTree Insert(AVLTree T, ElementType X){
//将 X 插入AVL树 T 中,并且返回调整后的AVL树
if(! T){ //若插入空树,则新建包含一个结点的树
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->Data = X;
T->Height = ;
T->Left = T->Right = NULL;
}
else if(X < T->Data ){
// 插入 T 的左子树
T->Left =Insert(T->Left , X);
// 如果需要左旋
if(GetHeight(T->Left ) - GetHeight(T->Right )== )
if(X <T->Left ->Data)
T = SingleLeftRotation(T); //左单旋
else
T = DoubleLeftRightRotation(T); //左-右双旋
}
else if(X > T->Data ){
// 插入 T 的右子树
T->Right = Insert(T->Right , X);
// 如果需要右旋
if(GetHeight(T->Left ) - GetHeight(T->Right )== -)
if(X > T->Right ->Data)
T = SingleRightRotation(T); //右单选
else
T = DoubleRightLeftRotation(T); //右-左双旋
}
// else X==T->Data 无需插入 //更新树高
T->Height = max(GetHeight(T->Left ),GetHeight(T->Right )) + ;
return T;
}
完整测试:
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
typedef int ElementType;
typedef struct AVLNode * AVLTree;
struct AVLNode{
ElementType Data;
AVLTree Left;
AVLTree Right;
int Height;
};
int GetHeight(AVLTree T){
if(T) return max(GetHeight(T->Left ),GetHeight(T->Right )) + ;
else return ;
}
AVLTree SingleLeftRotation(AVLTree A){
AVLTree B = A->Left ;
A->Left = B->Right ;
B->Right = A;
A->Height = max(GetHeight(A->Left ), GetHeight(A->Right )) + ;
B->Height = max(GetHeight(B->Left ),A->Height ) + ;
return B;
}
AVLTree SingleRightRotation(AVLTree A){
AVLTree B = A->Right ;
A->Right = B->Left ;
B->Left = A;
A->Height = max(GetHeight(A->Left ), GetHeight(A->Right )) + ;
B->Height = max(GetHeight(B->Right ),A->Height ) + ;
return B;
}
AVLTree DoubleLeftRightRotation(AVLTree A){
A->Left = SingleRightRotation(A->Left );
return SingleLeftRotation(A);
}
AVLTree DoubleRightLeftRotation(AVLTree A){
A->Right = SingleLeftRotation(A->Right );
return SingleRightRotation(A);
}
AVLTree Insert(AVLTree T, ElementType X){
if(! T){
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->Data = X;
T->Height = ;
T->Left = T->Right = NULL;
}
else if(X < T->Data ){
T->Left =Insert(T->Left , X);
if(GetHeight(T->Left ) - GetHeight(T->Right )== )
if(X <T->Left ->Data)
T = SingleLeftRotation(T);
else
T = DoubleLeftRightRotation(T);
}
else if(X > T->Data ){
T->Right = Insert(T->Right , X);
if(GetHeight(T->Left ) - GetHeight(T->Right )== -)
if(X > T->Right ->Data)
T = SingleRightRotation(T);
else
T = DoubleRightLeftRotation(T);
}
T->Height = max(GetHeight(T->Left ),GetHeight(T->Right )) + ;
return T;
}
void LevelorderTravelsal(AVLTree BT){
queue<AVLTree> q;
AVLTree T;
if(!BT) return;
q.push(BT);
while(!q.empty()){
T=q.front();
q.pop();
cout<<T->Data <<" ";
if(T->Left ) q.push(T->Left );
if(T->Right ) q.push(T->Right );
}
}
int main(){
int n; cin>>n;
AVLTree T = NULL;
for(int i=;i<n;i++){
int x; cin>>x;
T = Insert(T, x);
}
LevelorderTravelsal(T);
}