pandas 常用清洗数据(二)

时间:2023-03-09 01:30:59
pandas 常用清洗数据(二)

1、

df.head()

Here we import pandas using the alias 'pd', then we read in our data.

df.head - shows us the first  rows and headers - it gives us an idea what to expect. df.tail - shows us the last  rows

2、

n []: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
...: 'B': ['B0', 'B1', 'B2', 'B3'],
...: 'C': ['C0', 'C1', 'C2', 'C3'],
...: 'D': ['D0', 'D1', 'D2', 'D3']},
...: index=[, , , ])
...: ` In []: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
...: 'B': ['B4', 'B5', 'B6', 'B7'],
...: 'C': ['C4', 'C5', 'C6', 'C7'],
...: 'D': ['D4', 'D5', 'D6', 'D7']},
...: index=[, , , ])
...: In []: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
...: 'B': ['B8', 'B9', 'B10', 'B11'],
...: 'C': ['C8', 'C9', 'C10', 'C11'],
...: 'D': ['D8', 'D9', 'D10', 'D11']},
...: index=[, , , ])   
 
In frames = [df1, df2, df3]
In [5]: result = pd.concat(frames)
result = df1.append([df2, df3])

2、copy and value_counts

df2 = df.copy()
df2.DATE.value_counts().sort_index() //sort by index data_print = data['vote_count'].value_counts().sort_index()
df['Amount'] = pd.to_numeric(df['Amount'])

3, add  del

del df2['column_name']
del df2['column_name']
del df2['column_name'] df.insert(loc=, column='Country', value='UK')
data.insert(0, '性别', data.pop('gender'))#pop返回删除的列,插入到第0列,并取新名为'性别'

4、筛选:

bool = dt.str.contains   # df 是Series类型,不是DataFrame类型
#返回的是True,False
#获取筛选数据
xuan_data =dt[bool] #True的