常用JVM配置参数
- Trace跟踪参数
- 堆的分配参数
- 栈的分配参数
Trace跟踪参数
1.打开GC的日志,如果在程序的运行过程中,系统发生了GC,就会打印相关的信息。
-verbose:gc -XX:+printGC 可以打印GC的简要信息//0.0001606 secs垃圾收集消耗的时间//回收前占据的堆的空间是4790k,回收后占据374k,相减,回收了多少垃圾//整个堆的大小是15872k [GC 4790K->374K(15872K), 0.0001606 secs] [GC 4790K->374K(15872K), 0.0001474 secs] [GC 4790K->374K(15872K), 0.0001563 secs] [GC 4790K->374K(15872K), 0.0001682 secs]
2.上述打印的内容比较简单,如果要打印出GC的详细信息,
-XX:+PrintGCDetails 打印GC详细信息 -XX:+PrintGCTimeStamps 打印CG发生的时间戳 例//新生代的GC,回收前占4416k,回收之后清空,新生代总大小4928k。 [GC[DefNew: 4416K->0K(4928K), 0.0001897 secs] 4790K->374K(15872K), 0.0002232 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
-XX:+PrintGCDetails的输出 Heap def new generation total 13824K, used 11223K [0x27e80000, 0x28d80000, 0x28d80000) eden space 12288K, 91% used [0x27e80000, 0x28975f20, 0x28a80000) from space 1536K, 0% used [0x28a80000, 0x28a80000, 0x28c00000) to space 1536K, 0% used [0x28c00000, 0x28c00000, 0x28d80000) tenured generation total 5120K, used 0K [0x28d80000, 0x29280000, 0x34680000) the space 5120K, 0% used [0x28d80000, 0x28d80000, 0x28d80200, 0x29280000) compacting perm gen total 12288K, used 142K [0x34680000, 0x35280000, 0x38680000) the space 12288K, 1% used [0x34680000, 0x346a3a90, 0x346a3c00, 0x35280000) ro space 10240K, 44% used [0x38680000, 0x38af73f0, 0x38af7400, 0x39080000) rw space 12288K, 52% used [0x39080000, 0x396cdd28, 0x396cde00, 0x39c80000)
GC日志重定向
-Xloggc:log/gc.log 指定GC log的位置,以文件输出 帮助开发人员分析问题
-----
-XX:+PrintHeapAtGC 每次一次GC后,都打印堆信息 { Heap before GC invocations=0 (full 0): def new generation total 3072K, used 2752K [0x33c80000, 0x33fd0000, 0x33fd0000) eden space 2752K, 100% used [0x33c80000, 0x33f30000, 0x33f30000) from space 320K, 0% used [0x33f30000, 0x33f30000, 0x33f80000) to space 320K, 0% used [0x33f80000, 0x33f80000, 0x33fd0000) tenured generation total 6848K, used 0K [0x33fd0000, 0x34680000, 0x34680000) the space 6848K, 0% used [0x33fd0000, 0x33fd0000, 0x33fd0200, 0x34680000) compacting perm gen total 12288K, used 143K [0x34680000, 0x35280000, 0x38680000) the space 12288K, 1% used [0x34680000, 0x346a3c58, 0x346a3e00, 0x35280000) ro space 10240K, 44% used [0x38680000, 0x38af73f0, 0x38af7400, 0x39080000) rw space 12288K, 52% used [0x39080000, 0x396cdd28, 0x396cde00, 0x39c80000) [GC[DefNew: 2752K->320K(3072K), 0.0014296 secs] 2752K->377K(9920K), 0.0014604 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap after GC invocations=1 (full 0): def new generation total 3072K, used 320K [0x33c80000, 0x33fd0000, 0x33fd0000) eden space 2752K, 0% used [0x33c80000, 0x33c80000, 0x33f30000) from space 320K, 100% used [0x33f80000, 0x33fd0000, 0x33fd0000) to space 320K, 0% used [0x33f30000, 0x33f30000, 0x33f80000) tenured generation total 6848K, used 57K [0x33fd0000, 0x34680000, 0x34680000) the space 6848K, 0% used [0x33fd0000, 0x33fde458, 0x33fde600, 0x34680000) compacting perm gen total 12288K, used 143K [0x34680000, 0x35280000, 0x38680000) the space 12288K, 1% used [0x34680000, 0x346a3c58, 0x346a3e00, 0x35280000) ro space 10240K, 44% used [0x38680000, 0x38af73f0, 0x38af7400, 0x39080000) rw space 12288K, 52% used [0x39080000, 0x396cdd28, 0x396cde00, 0x39c80000) }
3.跟踪类的被加载的过程
-XX:+TraceClassLoading 监控类的加载 [Loaded java.lang.Object from shared objects file] [Loaded java.io.Serializable from shared objects file] [Loaded java.lang.Comparable from shared objects file] [Loaded java.lang.CharSequence from shared objects file] [Loaded java.lang.String from shared objects file] [Loaded java.lang.reflect.GenericDeclaration from shared objects file] [Loaded java.lang.reflect.Type from shared objects file]
4.打印类的使用情况
XX:+PrintClassHistogram 在控制台按下Ctrl+Break后,打印类的信息: num #instances #bytes class name ---------------------------------------------- 1: 890617 470266000 [B 2: 890643 21375432 java.util.HashMap$Node 3: 890608 14249728 java.lang.Long 4: 13 8389712 [Ljava.util.HashMap$Node; 5: 2062 371680 [C 6: 463 41904 java.lang.Class 分别显示:序号、实例数量、总大小、类
所有的类的使用情况。
1:890617:470266000:[B
-->Byte数组,有890617个Byte数组对象,它们总共占了470266000字节的空间。
堆的分配参数
-Xmx –Xms 指定最大堆和最小堆 //JVM最多使用20M空间,系统一启动就占用5M空间 -Xmx20m -Xms5m 运行代码:
public class Test { public static void main(String[] args) { System.out.print("Xmx="); System.out.println(Runtime.getRuntime().maxMemory()/1024.0/1024+"M"); System.out.print("free mem="); System.out.println(Runtime.getRuntime().freeMemory()/1024.0/1024+"M"); System.out.print("total mem="); System.out.println(Runtime.getRuntime().totalMemory()/1024.0/1024+"M"); } }
public class Test { public static void main(String[] args) { byte[] b=new byte[1*1024*1024]; System.out.println("分配了1M空间给数组"); System.out.print("Xmx="); System.out.println(Runtime.getRuntime().maxMemory()/1024.0/1024+"M"); System.out.print("free mem="); System.out.println(Runtime.getRuntime().freeMemory()/1024.0/1024+"M"); System.out.print("total mem="); System.out.println(Runtime.getRuntime().totalMemory()/1024.0/1024+"M"); } }
我们看到,总内存没变,这里涉及一个原则:Java会尽可能维持在最小堆(Xms5m)
但是当内存中对象比较大,最小堆无法满足要求时,总内存就会变大。
public class Test { public static void main(String[] args) { byte[] b=new byte[4*1024*1024]; System.out.println("分配了4M空间给数组"); System.out.print("Xmx="); System.out.println(Runtime.getRuntime().maxMemory()/1024.0/1024+"M"); System.out.print("free mem="); System.out.println(Runtime.getRuntime().freeMemory()/1024.0/1024+"M"); System.out.print("total mem="); System.out.println(Runtime.getRuntime().totalMemory()/1024.0/1024+"M"); } }
可以看到,总内存变大了。
在前面两个字节数组的基础上,手动进行垃圾回收,
public class Test { public static void main(String[] args) { System.gc(); System.out.print("Xmx="); System.out.println(Runtime.getRuntime().maxMemory()/1024.0/1024+"M"); System.out.print("free mem="); System.out.println(Runtime.getRuntime().freeMemory()/1024.0/1024+"M"); System.out.print("total mem="); System.out.println(Runtime.getRuntime().totalMemory()/1024.0/1024+"M"); } }
维持在最小堆(Xms5m)
------
-Xmn 设置新生代大小 -XX:NewRatio 新生代(eden+2*s)和老年代(不包含永久区)的比值 4 表示 新生代:老年代=1:4,即年轻代占堆的1/5 -XX:SurvivorRatio 设置两个Survivor区和eden的比 8表示 两个Survivor :eden=2:8,即一个Survivor占年轻代的1/10
public class Test { public static void main(String[] args) { byte[] b=null; for(int i=0;i<10;i++) b=new byte[1*1024*1024]; } }
Heap def new generation total 960K, used 551K [0x327a0000, 0x328a0000, 0x328a0000) eden space 896K, 61% used [0x327a0000, 0x32829e68, 0x32880000) from space 64K, 0% used [0x32880000, 0x32880000, 0x32890000) to space 64K, 0% used [0x32890000, 0x32890000, 0x328a0000) tenured generation total 19456K, used 10240K [0x328a0000, 0x33ba0000, 0x33ba0000) the space 19456K, 52% used [0x328a0000, 0x332a00a0, 0x332a0200, 0x33ba0000) compacting perm gen total 12288K, used 145K [0x33ba0000, 0x347a0000, 0x37ba0000) the space 12288K, 1% used [0x33ba0000, 0x33bc44f0, 0x33bc4600, 0x347a0000) ro space 10240K, 41% used [0x37ba0000, 0x37fd2050, 0x37fd2200, 0x385a0000) rw space 12288K, 52% used [0x385a0000, 0x38be6800, 0x38be6800, 0x391a0000)
1.没有触发GC
2.全部分配在老年代
Heap def new generation total 13824K, used 11223K [0x327a0000, 0x336a0000, 0x336a0000) eden space 12288K, 91% used [0x327a0000, 0x33295f00, 0x333a0000) from space 1536K, 0% used [0x333a0000, 0x333a0000, 0x33520000) to space 1536K, 0% used [0x33520000, 0x33520000, 0x336a0000) tenured generation total 5120K, used 0K [0x336a0000, 0x33ba0000, 0x33ba0000) the space 5120K, 0% used [0x336a0000, 0x336a0000, 0x336a0200, 0x33ba0000) compacting perm gen total 12288K, used 145K [0x33ba0000, 0x347a0000, 0x37ba0000) the space 12288K, 1% used [0x33ba0000, 0x33bc44f0, 0x33bc4600, 0x347a0000) ro space 10240K, 41% used [0x37ba0000, 0x37fd2050, 0x37fd2200, 0x385a0000) rw space 12288K, 52% used [0x385a0000, 0x38be6800, 0x38be6800, 0x391a0000)
1.没有触发GC
2.全部分配在eden
3.老年代没有使用
[GC[DefNew: 5737K->372K(6464K), 0.0022402 secs] 5737K->1396K(19776K), 0.0022938 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap def new generation total 6464K, used 5786K [0x327a0000, 0x32ea0000, 0x32ea0000) eden space 5760K, 93% used [0x327a0000, 0x32ce9848, 0x32d40000) from space 704K, 52% used [0x32df0000, 0x32e4d068, 0x32ea0000) to space 704K, 0% used [0x32d40000, 0x32d40000, 0x32df0000) tenured generation total 13312K, used 1024K [0x32ea0000, 0x33ba0000, 0x33ba0000) the space 13312K, 7% used [0x32ea0000, 0x32fa0010, 0x32fa0200, 0x33ba0000) compacting perm gen total 12288K, used 145K [0x33ba0000, 0x347a0000, 0x37ba0000) the space 12288K, 1% used [0x33ba0000, 0x33bc44f0, 0x33bc4600, 0x347a0000) ro space 10240K, 41% used [0x37ba0000, 0x37fd2050, 0x37fd2200, 0x385a0000) rw space 12288K, 52% used [0x385a0000, 0x38be6800, 0x38be6800, 0x391a0000)
1.进行了1次新生代GC
2.s0 s1 太小需要老年代担保
[GC[DefNew: 2583K->1396K(5376K), 0.0023742 secs] 2583K->1396K(18688K), 0.0024289 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] [GC[DefNew: 4582K->1024K(5376K), 0.0017806 secs] 4582K->1395K(18688K), 0.0018160 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] [GC[DefNew: 4124K->1024K(5376K), 0.0007338 secs] 4495K->1395K(18688K), 0.0007731 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap def new generation total 5376K, used 3162K [0x327a0000, 0x32ea0000, 0x32ea0000) eden space 3584K, 59% used [0x327a0000, 0x329b6960, 0x32b20000) from space 1792K, 57% used [0x32ce0000, 0x32de0010, 0x32ea0000) to space 1792K, 0% used [0x32b20000, 0x32b20000, 0x32ce0000) tenured generation total 13312K, used 371K [0x32ea0000, 0x33ba0000, 0x33ba0000) the space 13312K, 2% used [0x32ea0000, 0x32efcf00, 0x32efd000, 0x33ba0000) compacting perm gen total 12288K, used 145K [0x33ba0000, 0x347a0000, 0x37ba0000) the space 12288K, 1% used [0x33ba0000, 0x33bc44f0, 0x33bc4600, 0x347a0000)
1.进行了3次新生代GC
2.s0 s1 增大
[GC[DefNew: 4625K->1396K(7680K), 0.0030680 secs] 4625K->1396K(17920K), 0.0031348 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] [GC[DefNew: 5651K->1024K(7680K), 0.0022846 secs] 5651K->1395K(17920K), 0.0023257 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap def new generation total 7680K, used 3212K [0x327a0000, 0x331a0000, 0x331a0000) eden space 5120K, 42% used [0x327a0000, 0x329c2fe8, 0x32ca0000) from space 2560K, 40% used [0x32ca0000, 0x32da0098, 0x32f20000) to space 2560K, 0% used [0x32f20000, 0x32f20000, 0x331a0000) tenured generation total 10240K, used 371K [0x331a0000, 0x33ba0000, 0x33ba0000) the space 10240K, 3% used [0x331a0000, 0x331fce78, 0x331fd000, 0x33ba0000) compacting perm gen total 12288K, used 145K [0x33ba0000, 0x347a0000, 0x37ba0000) the space 12288K, 1% used [0x33ba0000, 0x33bc44f0, 0x33bc4600, 0x347a0000) ro space 10240K, 41% used [0x37ba0000, 0x37fd2050, 0x37fd2200, 0x385a0000)
比例分配,新生代 老年代对半开
对象全部留在新生代
[GC[DefNew: 5751K->1396K(8192K), 0.0022373 secs] 5751K->1396K(18432K), 0.0022949 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] Heap def new generation total 8192K, used 6830K [0x327a0000, 0x331a0000, 0x331a0000) eden space 6144K, 88% used [0x327a0000, 0x32cee838, 0x32da0000) from space 2048K, 68% used [0x32fa0000, 0x330fd078, 0x331a0000) to space 2048K, 0% used [0x32da0000, 0x32da0000, 0x32fa0000) tenured generation total 10240K, used 0K [0x331a0000, 0x33ba0000, 0x33ba0000) the space 10240K, 0% used [0x331a0000, 0x331a0000, 0x331a0200, 0x33ba0000) compacting perm gen total 12288K, used 145K [0x33ba0000, 0x347a0000, 0x37ba0000) the space 12288K, 1% used [0x33ba0000, 0x33bc44f0, 0x33bc4600, 0x347a0000) ro space 10240K, 41% used [0x37ba0000, 0x37fd2050, 0x37fd2200, 0x385a0000) rw space 12288K, 52% used [0x385a0000, 0x38be6800, 0x38be6800, 0x391a0000)
减少了s0 s1 GC数量变少,老年代未使用 空间使用率更高
-XX:+HeapDumpOnOutOfMemoryError OOM时导出堆到文件 -XX:+HeapDumpPath 导出OOM的路径 -Xmx20m -Xms5m -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=d:/a.dump
public class Test { public static void main(String[] args) { Vector v=new Vector(); for(int i=0;i<25;i++) v.add(new byte[1*1024*1024]); } }
堆的分配参数 – 总结
--根据实际事情调整新生代和幸存代的大小
--官方推荐新生代占堆的3/8
--幸存代占新生代的1/10
--在OOM时,记得Dump出堆,确保可以排查现场问题
永久区分配参数
-XX:PermSize -XX:MaxPermSize 设置永久区的初始空间和最大空间 他们表示,一个系统可以容纳多少个类型
使用CGLIB等库的时候,可能会产生大量的类,这些类,有可能撑爆永久区导致OOM
for(int i=0;i<100000;i++){ CglibBean bean = new CglibBean("geym.jvm.ch3.perm.bean"+i,new HashMap()); }
栈大小分配
-Xss 通常只有几百K 决定了函数调用的深度 每个线程都有独立的栈空间 局部变量、参数 分配在栈上
public class TestStackDeep { private static int count=0; public static void recursion(long a,long b,long c){ long e=1,f=2,g=3,h=4,i=5,k=6,q=7,x=8,y=9,z=10; count++; recursion(a,b,c); } public static void main(String args[]){ try{ recursion(0L,0L,0L); }catch(Throwable e){ System.out.println("deep of calling = "+count); e.printStackTrace(); } } }
递归调用 -Xss128K deep of calling = 701 java.lang.*Error -Xss256K deep of calling = 1817 java.lang.*Error
去掉局部变量 调用层次可以更深