知识内容:
1.requests库
2.selenium库
3.BeautifulSoup4库
4.re正则解析库
5.lxml库
参考:
http://www.cnblogs.com/wupeiqi/articles/5354900.html
http://www.cnblogs.com/linhaifeng/articles/7785043.html
一、requests库
1.安装及简单使用
(1)安装
pip3 install requests
(2)简单使用
import requests r = requests.get("http://www.baidu.com") # 发起get请求
print(r.status_code) # 打印状态码
r.encoding = "utf-8" # 指定编码
print(r.text) # 输出文本内容
2.基于GET请求
requests.get(url, params=None, **kwargs)
(1)基本请求
import requests url = "https://www.autohome.com.cn/news/" response = requests.get(url)
response.encoding = response.apparent_encoding # 指定编码
print(response.text)
(2)带参数的GET请求
加headers
# 在请求头内将自己伪装成浏览器,否则百度不会正常返回页面内容
import requests headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36',
} response = requests.get('https://www.baidu.com/s?wd=python&pn=1', headers=headers)
print(response.text)
对url进行编码
# 在请求头内将自己伪装成浏览器,否则百度不会正常返回页面内容
import requests headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36',
} # 如果查询关键词是中文或者有其他特殊符号,则必须进行url编码
from urllib.parse import urlencode wd = '六六六'
encode_res = urlencode({'k': wd}, encoding='utf-8')
keyword = encode_res.split('=')[1]
print(keyword)
url = 'https://www.baidu.com/s?wd=%s&pn=1' % keyword response = requests.get(url, headers=headers)
res = response.text
print(res)
params参数
Requests模块允许使用params关键字传递参数,以一个字典来传递参数,例子如下:

import requests
data = {
"name":"zhaofan",
"age":22
}
response = requests.get("http://httpbin.org/get",params=data)
print(response.url)
print(response.text)

GET请求中headers常用元素如下:
#通常我们在发送请求时都需要带上请求头,请求头是将自身伪装成浏览器的关键,常见的有用的请求头如下
Host
Referer #大型网站通常都会根据该参数判断请求的来源
User-Agent #客户端
Cookie #Cookie信息虽然包含在请求头里,但requests模块有单独的参数处理他,headers内就不要放它了
(3)cookies
# 登录github,然后从浏览器中获取cookies,以后就可以直接拿着cookie登录了,无需输入用户名密码 import requests Cookies = {
'user_session': 'ac0TP4aV3yyjfejv9dJOv1Erb_IJiSHTd_ac3s4N_sEZ71gK'
} # github对请求头没有什么限制,我们无需定制user-agent,对于其他网站可能还需要定制
response = requests.get('https://github.com/settings/emails', cookies=Cookies) print('1572834916@qq.com' in response.text) # True
3.基于POST请求
(1)requests模块的post方法和get方法的区别
requests.post()用法与requests.get()完全一致,特殊的是requests.post()有一个data参数,用来存放请求体数据
import requests data = {
"name":"wyb",
"age": 21,
}
response = requests.post("http://httpbin.org/post", data=data)
print(response.text)
(2)发送post请求,模拟浏览器的登录行为
实例 模拟登录github
'''
一 目标站点分析
浏览器输入https://github.com/login
然后输入错误的账号密码,抓包
发现: 登录行为是post并提交到:https://github.com/session且请求头包含cookie
而且请求体包含:
commit:Sign in
utf8:✓
authenticity_token: taqxIh0Qs8Qm54Ov2WoR+RHq6O/1a8L/F960j/arN6xDEC9QArBTp6D4VFROYwLveIk+o5Ca5aBhWMEmhNmEnA==
login: 1572834916@qq.com
password:123 二 流程分析
先GET:https://github.com/login拿到初始cookie与authenticity_token
返回POST:https://github.com/session, 带上初始cookie,带上请求体(authenticity_token,用户名,密码等)
最后拿到登录cookie ps:如果密码是密文形式,则可以先输错账号,输对密码,然后到浏览器中拿到加密后的密码
但是github的密码是明文,故不需使用上述的步骤
''' import requests
import re # 第一次请求
r1 = requests.get('https://github.com/login')
r1_cookie = r1.cookies.get_dict() # 拿到初始cookie(未被授权)
authenticity_token = re.findall(r'name="authenticity_token".*?value="(.*?)"', r1.text)[0] # 从页面中拿到CSRF TOKEN # 第二次请求:带着初始cookie和TOKEN发送POST请求给登录页面,带上账号密码
data = {
'commit': 'Sign in',
'utf8': '✓',
'authenticity_token': authenticity_token,
'login': '1572834916@qq.com',
'password': 'xxx'
}
r2 = requests.post('https://github.com/session',
data=data,
cookies=r1_cookie
) login_cookie = r2.cookies.get_dict() # 第三次请求:以后的登录,拿着login_cookie就可以,比如访问一些个人配置
r3 = requests.get('https://github.com/settings/emails',
cookies=login_cookie) print('1572834916@qq.com' in r3.text) # True
当然上面也可以用requests.session()来自动保存cookie信息,示例如下:
import requests
import re session = requests.session()
# 第一次请求
r1 = session.get('https://github.com/login')
authenticity_token = re.findall(r'name="authenticity_token".*?value="(.*?)"', r1.text)[0] # 从页面中拿到CSRF TOKEN # 第二次请求:带着初始cookie和TOKEN发送POST请求给登录页面,带上账号密码
data = {
'commit': 'Sign in',
'utf8': '✓',
'authenticity_token': authenticity_token,
'login': '1572834916@qq.com',
'password': 'xxx'
}
r2 = session.post('https://github.com/session', data=data) # 第三次请求:以后的登录,拿着login_cookie就可以,比如访问一些个人配置
r3 = session.get('https://github.com/settings/emails') print('1572834916@qq.com' in r3.text) # True
4.响应Response
(1)response属性
import requests response = requests.get('http://www.zhihu.com')
# response属性
print(response.text) # 以文本形式打印网页源码
print(response.content) # 以字节流形式打印 print(response.status_code) # 打印状态码
print(response.headers) # 打印头信息
print(response.cookies) # 打印cookies信息
print(response.cookies.get_dict()) # 将cookies信息以字典方式打印
print(response.cookies.items()) # 打印cookies的键 print(response.url) # 输出响应的链接 print(response.encoding) # 输出响应的编码(从header中猜测的响应内容编码格式)
(2)编码问题
# 编码问题
import requests
response = requests.get('http://www.autohome.com/news') # 将编码设置为网站的编码(不设置可能无法显示中文)
response.encoding = response.apparent_encoding
print(response.text)
(3)获取二进制数据
import requests response = requests.get('https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1509868306530&di=712e4ef3ab258b36e9f4b48e85a81c9d&imgtype=0&src=http%3A%2F%2Fc.hiphotos.baidu.com%2Fimage%2Fpic%2Fitem%2F11385343fbf2b211e1fb58a1c08065380dd78e0c.jpg') # 以字节流的形式写入文件
with open('girl.jpg', 'wb') as f:
f.write(response.content)
#stream参数:一点一点的取,比如下载视频时,如果视频100G,用response.content然后一下子写到文件中是不合理的 import requests response=requests.get('https://gss3.baidu.com/6LZ0ej3k1Qd3ote6lo7D0j9wehsv/tieba-smallvideo-transcode/1767502_56ec685f9c7ec542eeaf6eac93a65dc7_6fe25cd1347c_3.mp4',
stream=True) with open('b.mp4','wb') as f:
for line in response.iter_content():
f.write(line)
(4)解析json
#解析json
import requests
import json response=requests.get('http://httpbin.org/get')
res1=json.loads(response.text) # 太麻烦
res2=response.json() # 直接获取json数据 print(res1 == res2) # True
5.所有方法及所有参数
(1)requests模块中所有方法
requests.get(url, params=None, **kwargs)
requests.post(url, data=None, json=None, **kwargs)
requests.put(url, data=None, **kwargs)
requests.head(url, **kwargs)
requests.delete(url, **kwargs)
requests.patch(url, data=None, **kwargs)
requests.options(url, **kwargs) # 以上方法均是在此方法的基础上构建
requests.request(method, url, **kwargs)
(2)requests模块中的参数
重要的参数:
- method: 提交方式
- url: 提交地址
- params: 在URL中传递的参数,GET中独有
requests.request(
method='GET',
url= 'http://www.oldboyedu.com',
params = {'k1':'v1','k2':'v2'}
)
请求的链接:http://www.oldboyedu.com?k1=v1&k2=v2
- data: 在请求体里传递的数据
requests.request(
method='POST',
url= 'http://www.oldboyedu.com',
params = {'k1':'v1','k2':'v2'},
data = {'use':'wyb','pwd': '123'}(也可以写成"user=wyb&pwd=123")
)
请求头: content-type: application/url-form-encod.....
请求体: "use=wyb&pwd=123"
- json 在请求体里传递的数据
requests.request(
method='POST',
url= 'http://www.oldboyedu.com',
params = {'k1':'v1','k2':'v2'},
json = {'use':'wyb','pwd': '123'}
)
请求头: content-type: application/json
请求体: "{'use':'wyb','pwd': '123'}"
注: 当字典中嵌套字典时使用json
- headers 请求头
requests.request(
method='POST',
url= 'http://www.oldboyedu.com',
params = {'k1':'v1','k2':'v2'},
json = {'use':'alex','pwd': '123'},
headers={
'Referer': 'http://dig.chouti.com/',
'User-Agent': "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36"
}
)
- cookies Cookies
其他参数:
- files 上传文件
- auth 基本认知(headers中加入加密的用户名和密码)
- timeout 请求和响应的超时时间
- allow_redirects 是否允许重定向
- proxies 代理
- verify 是否忽略证书
- cert 证书文件
- stream 村长下大片
- session: 用于保存客户端历史访问信息
import requests
files= {"files":open("git.jpg","rb")}
response = requests.post("http://httpbin.org/post",files=files)
print(response.text)
(2)获取cookie
import requests response = requests.get("http://www.baidu.com")
print(response.cookies) for key,value in response.cookies.items():
print(key+"="+value)
cookie的一个作用就是可以用于模拟登陆,做会话维持
import requests
s = requests.Session()
s.get("http://httpbin.org/cookies/set/number/123456")
response = s.get("http://httpbin.org/cookies")
print(response.text)
两次requests请求之间是独立的,通过创建一个session对象,两次请求都通过这个对象访问
(3)证书验证
现在的很多网站都是https的方式访问,所以这个时候就涉及到证书的问题
import requests response = requests.get("https:/www.12306.cn")
print(response.status_code)
默认的12306网站的证书是不合法的,这样就会提示错误,为了避免这种情况的发生可以通过verify=False
但是这样是可以访问到页面,但是会提示:
InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings InsecureRequestWarning)
解决方法为:
import requests
from requests.packages import urllib3
urllib3.disable_warnings()
response = requests.get("https://www.12306.cn",verify=False)
print(response.status_code)
这样就不会提示警告信息,当然也可以通过cert参数放入证书路径
(4)代理设置
import requests proxies= {
"http":"http://127.0.0.1:9999",
"https":"http://127.0.0.1:8888"
}
response = requests.get("https://www.baidu.com",proxies=proxies)
print(response.text)
如果代理需要设置账户名和密码,只需要将字典更改为如下:
proxies = {
"http":"http://user:password@127.0.0.1:9999"
}
如果你的代理是通过sokces这种方式则需要pip install "requests[socks]"
proxies= {
"http":"socks5://127.0.0.1:9999",
"https":"sockes5://127.0.0.1:8888"
}
(5)超时设置 -> 通过timeout参数可以设置超时的时间
(6)认证设置 -> 如果碰到需要认证的网站可以通过requests.auth模块实现

import requests from requests.auth import HTTPBasicAuth response = requests.get("http://120.27.34.24:9001/",auth=HTTPBasicAuth("user","123"))
print(response.status_code)

当然这里还有一种方式
import requests response = requests.get("http://120.27.34.24:9001/",auth=("user","123"))
print(response.status_code)
7.requests使用实例
# __author__ = "wyb"
# date: 2018/5/21
import requests url = "https://item.jd.com/5036602.html"
headers = {
"User-Agent": "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Mobile Safari/537.36"
}
try:
res = requests.get(url, headers=headers)
res.raise_for_status()
res.encoding = res.apparent_encoding
print(res.status_code)
print(res.text)
except:
print("爬取失败")
爬取京东商品页面
# __author__ = "wyb"
# date: 2018/5/21
import requests url = "http://www.baidu.com/s"
kv = {"wd": "python"} # 搜索关键词 try:
res = requests.get(url, params=kv)
print(res.url)
print(res.status_code)
res.raise_for_status()
print(res.text)
except:
print("爬取失败")
百度关键词搜索
# __author__ = "wyb"
# date: 2018/5/21
import requests url = "http://m.ip138.com/ip.asp?ip=" try:
ip = "202.204.80.112"
res = requests.get(url+ip)
res.raise_for_status()
res.encoding = res.apparent_encoding
print(res.text[-500:])
except:
print("爬取失败")
IP地址归属地查询
# __author__ = "wyb"
# date: 2018/5/26 import os
import requests
from bs4 import BeautifulSoup
import re
import time headers = {
"User-Agent": "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Mobile Safari/537.36"
} # url = "https://www.zhihu.com/question/22918070" # url为知乎链接
url = input("请输入知乎的链接>>>").strip()
links = [] try:
html = requests.get(url, headers=headers)
soup = BeautifulSoup(html.text, 'html.parser')
# 用Beautiful Soup结合正则表达式来提取包含所有图片链接(img标签中,class=**,以.jpg格式结尾的链接)的语句
links = soup.find_all('img', src=re.compile(r'.jpg$'))
# print(links)
except Exception as e:
print("请输入正确的链接或查看网络是否连接!")
exit() try:
# 设置保存图片的路径,否则会保存到程序当前路径
path = r'./images' # 路径前的r是保持字符串原始值的意思,就是说不对其中的符号进行转义
for link in links:
print(link.attrs['src'])
src = link.attrs['src']
if not os.path.exists('imgs'):
os.mkdir('imgs')
img = requests.get(src, headers=headers)
import uuid
with open("imgs/%s.jpg" % uuid.uuid4(), "wb") as f:
f.write(img.content)
except Exception as e:
print()
else:
print("图片下载成功请到该程序目录下的imgs文件夹下查看") print("牛不牛逼啊?") time.sleep(5)
爬取知乎图片
爬取图片原理:
二、selenium库
1.selenium介绍与其作用
selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题
selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如跳转、输入、点击、下拉等,来拿到网页渲染之后的结果,可支持多种浏览器
from selenium import webdriver
browser=webdriver.Chrome()
browser=webdriver.Firefox()
browser=webdriver.PhantomJS()
browser=webdriver.Safari()
browser=webdriver.Edge()
注:个人推荐使用PhantomJS这个浏览器,直接百度下载安装,安装完了后配置一下path即可
2.selenium基本使用
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By # 按照什么方式查找,By.ID,By.CSS_SELECTOR
from selenium.webdriver.common.keys import Keys # 键盘按键操作
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait # 等待页面加载某些元素 browser=webdriver.Chrome()
try:
browser.get('https://www.baidu.com') input_tag=browser.find_element_by_id('kw')
input_tag.send_keys('美女')
input_tag.send_keys(Keys.ENTER) #输入回车 wait=WebDriverWait(browser,10)
# 等到id为content_left的元素加载完毕,最多等10秒
wait.until(EC.presence_of_element_located((By.ID,'content_left'))) print(browser.page_source)
print(browser.current_url)
print(browser.get_cookies()) finally:
browser.close()
三、BeautifulSoup4库
#安装 Beautiful Soup
pip install bs4 #安装解析器
pip install lxml
pip install html5lib
BeautifulSoup中可以使用的解释器如下:
解析器 | 使用方法 | 优势 | 劣势 |
---|---|---|---|
Python标准库 | BeautifulSoup(markup, "html.parser") |
|
|
lxml HTML 解析器 | BeautifulSoup(markup, "lxml") |
|
|
lxml XML 解析器 |
BeautifulSoup(markup, ["lxml", "xml"]) BeautifulSoup(markup, "xml") |
|
|
html5lib | BeautifulSoup(markup, "html5lib") |
|
|
from bs4 import BeautifulSoup
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!-- Elsie --></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
""" soup = BeautifulSoup(html, 'html.parser') # 创建BeautifulSoup对象
print(soup.prettify()) # 打印soup对象(格式化输出)
(2)BeautifulSoup对象中的常用方法
- find_all方法:fin_all(tag, attributes, recursive, text, limit, keywords)
- find方法:find(tag, attributes, recursive, text, keywords)
- find()方法类似find_all()方法,只不过find_all()方法返回的是文档中符合条件的tag是一个集合,而find()方法返回的只是一个tag
- select()方法: # select方法中的选择器类似CS,将在后面详细介绍
- get_text()方法 -> 获取对象中的文本内容
find和find_all中的参数:
- tag:标签名
- attributes:一个标签的若干属性和其对应的值
- recursive:布尔变量,设置为True表示会递归查找,否则不会递归查找,find_all方法默认支持递归查找,一般情况下这个参数不需要设置
- text:用标签的文本内容匹配
- limit:只用于find_all方法,find其实等价于find_all参数limit等于1时的情况
- keyword:选择那些具有指定属性的标签
(3)BeautifulSoup对象中的属性
- 标签选择器:soup.标签名 -> 获得这个标签(多个这样的标签,返回的结果是第一个标签)
- 获取名称:soup.标签.name -> 获得该标签的名称
- 获取属性:soup.p.attrs['name']或soup.p['name'] -> 可以获取p标签的name属性值
- 获取内容:soup.p.string -> 可以获取第一个p标签的内容
- 嵌套选择:soup.head.title.string -> 获取head标签中的title标签中的内容
# __author__ = "wyb"
# date: 2018/5/21
from bs4 import BeautifulSoup
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!-- Elsie --></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
""" soup = BeautifulSoup(html, "html.parser") # 创建BeautifulSoup对象 print(soup.title) # 输出title标签
print(soup.title.name) # 输出title标签的name
print(soup.p) # 输出第一个p标签
print(soup.p.string) # 输出第一个p标签的内容
print(soup.p['class']) # 输出第一个p标签的class值
print(soup.p.b) # 嵌套查询
(4)BeautifulSoup中节点
子节点:contents和children
子孙节点:descendants
父节点:parent
祖先节点:list(enumerate(soup.a.parents))
兄弟节点:
- soup.a.next_siblings 获取后面的兄弟节点
- soup.a.previous_siblings 获取前面的兄弟节点
- soup.a.next_sibling 获取下一个兄弟标签
- souo.a.previous_sinbling 获取上一个兄弟标签
# __author__ = "wyb"
# date: 2018/5/21
from bs4 import BeautifulSoup
html = """
<html>
<head><title>The Dormouse's story</title></head>
<body>
<p class="story">
Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">
<span>Elsie</span>
</a>
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a>
and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>
and they lived at the bottom of a well.
</p>
<p class="story">...</p>
"""
soup = BeautifulSoup(html, 'lxml') # 获取子节点
print(soup.p.contents) # 将p标签下的所有子标签存入到了一个列表中
print(soup.p.children) # 迭代对象,而不是列表,只能通过循环的方式获取信息 # 获取子孙节点
print(soup.descendants) # 迭代对象,而不是列表,只能通过循环的方式获取信息 # 获取父节点
print(soup.p.parent) print(soup.p.next_siblings) # 获取后面的兄弟节点
print(soup.p.previous_siblings) # 获取前面的兄弟节点
print(soup.p.next_sibling) # 获取下一个兄弟标签
print(soup.p.previous_sinbling) # 获取上一个兄弟标签
- .表示class #表示id
- 标签1,标签2 找到所有的标签1和标签2
- 标签1 标签2 找到标签1内部的所有的标签2
- [attr] 可以通过这种方法找到具有某个属性的所有标签
- [atrr=value] 例子[target=_blank]表示查找所有target=_blank的标签
- 获取内容:通过get_text()就可以获取文本内容
- 获取属性:获取属性可以通过[属性名]或者attrs[属性名]
# __author__ = "wyb"
# date: 2018/5/21
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title">
<b>The Dormouse's story</b>
Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">
<span>Elsie</span>
</a>
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
<div class='panel-1'>
<ul class='list' id='list-1'>
<li class='element'>Foo</li>
<li class='element'>Bar</li>
<li class='element'>Jay</li>
</ul>
<ul class='list list-small' id='list-2'>
<li class='element'><h1 class='yyyy'>Foo</h1></li>
<li class='element xxx'>Bar</li>
<li class='element'>Jay</li>
</ul>
</div>
and they lived at the bottom of a well.
</p>
<p class="story">...</p>
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html, 'lxml') # 1、CSS选择器
print(soup.p.select('.sister'))
print(soup.select('.sister span'))
print(soup.select('#link1'))
print(soup.select('#link1 span'))
print(soup.select('#list-2 .element.xxx')) # 2、获取属性
print(soup.select('#list-2 h1')[0].attrs) # 3、获取内容
print(soup.select('#list-2 h1')[0].get_text())
5.BeautifulSoup使用实例
(1)BeautifulSoup简单使用
from bs4 import BeautifulSoup html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title">
<b>The Dormouse's story</b>
Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">
<span>Elsie</span>
</a>
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
<div class='panel-1'>
<ul class='list' id='list-1'>
<li class='element'>Foo</li>
<li class='element'>Bar</li>
<li class='element'>Jay</li>
</ul>
<ul class='list list-small' id='list-2'>
<li class='element'><h1 class='yyyy'>Foo</h1></li>
<li class='element xxx'>Bar</li>
<li class='element'>Jay</li>
</ul>
</div>
and they lived at the bottom of a well.
</p>
<p class="story">...</p>
""" soup = BeautifulSoup(html, "lxml")
for link in soup.find_all('a'):
print(link.get("href"))
找出所有a标签中的链接
(2)综合使用