Python基础(生成器)

时间:2023-03-09 00:27:05
Python基础(生成器)

二、生成器(可以看做是一种数据类型)

  描述:   

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

  列表解析(列表生成式):

 #生成一个列表[0,1,2,3,4,5,6,7,8,9]
#方式一:正常思维 for循环方法生成
li=[]
for i in range(10):
li.append(i)
print(li) #方式二:列表解析
li2=[i for i in range(10)]
print(li2) li3=[i for i in range(10) if i>5]
print(li3)

 生成器的两种生成方式:

 #创建生成器----列表解析方式
gen=(i for i in range(10))
#如果想获取迭代器中的元素可以通过next()或__next__()获取
print(next(gen))
print(next(gen))
print(gen.__next__())
print(gen.__next__())
print("-----------")
#但是一般都不会使用next方法获取生成器中的元素,太恶心!!!
#因为生成器也是可迭代对象,所以一般使用for循环获取生成器中的元素
for i in gen:
print(i) 14 #创建生成器----函数方式
def func():
yield 0
yield 1
yield 2
yield 3
for i in func():
print(i)

具有yield关键字的函数都是生成器,yield可以理解为return,返回后面的值给调用者。不同的是return返回后,函数会释放,而生成器则不会。在直接调用next方法或用for语句进行下一次迭代时,生成器会从yield下一句开始执行,直至遇到下一个yield。

  迭代器,可迭代对象,生成器关系:

Python基础(生成器)