很久之前做过线段树的问题(操作格子),时间长了之后再次接触到,发现当初理解的不是很透彻,然后代码冗长,再遇到的时候发现自己甚至不能独立地完成这个问题。
所以算法这个东西啊,
第一,是要经常练习(我个人认为…每一个程序员都不应该不擅长算法…从今天开始,要常写博客!)。
第二,是一定要理解透彻,理解透彻并不是说到网上找到了解答,然后自己照着能够运行出来,这样是不够的!甚至不是说你看完了一个算法之后,完全不看他的解答,然后你自己写出来,这样也是不够的!
先贴题目:
问题描述
有n个格子,从左到右放成一排,编号为1-n。
共有m次操作,有3种操作类型:
1.修改一个格子的权值,
2.求连续一段格子权值和,
3.求连续一段格子的最大值。
对于每个2、3操作输出你所求出的结果。
输入格式
第一行2个整数n,m。
接下来一行n个整数表示n个格子的初始权值。
接下来m行,每行3个整数p,x,y,p表示操作类型,p=1时表示修改格子x的权值为y,p=2时表示求区间[x,y]内格子权值和,p=3时表示求区间[x,y]内格子最大的权值。
输出格式
有若干行,行数等于p=2或3的操作总数。
每行1个整数,对应了每个p=2或3操作的结果。
样例输入
4 3
1 2 3 4
2 1 3
1 4 3
3 1 4
1 2 3 4
2 1 3
1 4 3
3 1 4
样例输出
6
3
3
数据规模与约定
对于20%的数据n <= 100,m <= 200。
对于50%的数据n <= 5000,m <= 5000。
对于100%的数据1 <= n <= 100000,m <= 100000,0 <= 格子权值 <= 10000。
下面贴代码:
//操作格子
#include<iostream>
#include<algorithm>
using namespace std;
struct GridNode{
int sum = 0;
int max = 0;
}segTree[400000];
int a[100001];
void build(int root, int start, int end){
//叶子
if (start == end){
segTree[root].sum = a[start];
segTree[root].max = a[start];
return;
}
int mid = (start + end) / 2;
build(2 * root, start, mid);
build(2 * root + 1, mid + 1, end);
//回溯更新结点
segTree[root].sum = segTree[2 * root].sum + segTree[2 * root + 1].sum;
segTree[root].max = max(segTree[2 * root].max, segTree[2 * root + 1].max); }
void update(int pos, int root, int start, int end, int x){
if (start == end){
segTree[root].max = x;
segTree[root].sum = x;
return;
}
int mid = (start + end) / 2;
if (pos <= mid){
update(pos, 2 * root, start, mid, x);
}
else{
update(pos, 2 * root + 1, mid + 1, end, x);
}
//回溯更新结点
segTree[root].sum = segTree[2 * root].sum + segTree[2 * root + 1].sum;
segTree[root].max = max(segTree[2 * root].max, segTree[2 * root + 1].max);
}
int querySum(int root, int nStart, int nEnd, int qStart, int qEnd){
if (qStart <= nStart && qEnd >= nEnd){
return segTree[root].sum;
}
int sum = 0;
int mid = (nStart + nEnd) / 2;
if (qStart <= mid)
sum += querySum(2 * root, nStart, mid, qStart, qEnd);
if (qEnd > mid)
sum += querySum(2 * root + 1, mid + 1, nEnd, qStart, qEnd);
return sum;
}
int queryMax(int root, int nStart, int nEnd, int qStart, int qEnd){
if (qStart <= nStart && qEnd >= nEnd){
return segTree[root].max;
}
int maxN = -1;
int mid = (nStart + nEnd) / 2;
if (qStart <= mid)
maxN = max(maxN, queryMax(2 * root, nStart, mid, qStart, qEnd));
if (qEnd > mid)
maxN = max(maxN, queryMax(2 * root + 1, mid + 1, nEnd, qStart, qEnd));
return maxN;
}
int main(){
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++){
cin >> a[i];
} build(1, 1, n);
for (int i = 0; i<m; i++){
int op, x, y;
cin >> op >> x >> y;
int resSum;
int resMax;
switch (op) {
case 1:
update(x, 1, 1, n, y);
break;
case 2:
resSum = querySum(1, 1, n, x, y);
cout << resSum << endl;
break;
case 3:
resMax = queryMax(1, 1, n, x, y);
cout << resMax << endl;
break; }
}
}