题意:
有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai,bi]这个区间的整数至少有ci个。如果存在这样的序列,请求出满足题目要求的最短的序列长度是多少。
分析:
dis[i]表示从0->i-1这i个数存在多少个数。
则有dis[b+1]-dis[a]>=c;
dis[i+1]-dis[i]>=0 && dis[i+1]-dis[i]<=1
转换成为:
dis[a]-dis[b+1]<=-c;
dis[i]-dis[i+1]<=0
dis[i+1]-dis[i]<=1
建图。dis[en]-dis[st]<=w.
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--) const int MAXN=5e4+;
struct Edge{
int from,to;
int dist;
};
struct BellmanFord{
int n,m;
vector<Edge>edges;
vector<int>G[MAXN];
bool inq[MAXN];
int d[MAXN];
int p[MAXN];
int cnt[MAXN];
void init(int n)
{
this->n=n;
for(int i=;i<n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int dist)
{
edges.push_back((Edge){from,to,dist});
m=edges.size();
G[from].push_back(m-);
}
bool negativeCycle()
{
queue<int>Q;
memset(inq,,sizeof(inq));
memset(cnt,,sizeof(cnt));
for(int i=;i<n;i++)
{
d[i]=;inq[]=true;Q.push(i);
}
while(!Q.empty())
{
int u=Q.front();Q.pop();
inq[u]=false;
for(int i=;i<G[u].size();i++)
{
Edge& e=edges[G[u][i]];
if(d[e.to]>d[u]+e.dist)
{
d[e.to]=d[u]+e.dist;
p[e.to]=G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to]=true;
if(++cnt[e.to]>n)
return true;
}
}
}
}
return false;
}
};
BellmanFord solver;
int main()
{
int n;
while(~scanf("%d",&n))
{
int maxn=;
int minn=INF;
int a,b,c;
solver.init(MAXN-); for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
maxn=max(maxn,b+);
minn=min(minn,a);
solver.AddEdge(b+,a,-c);
}
for(int i=;i<=maxn-;i++){
solver.AddEdge(i+,i,);
solver.AddEdge(i,i+,);
}
solver.negativeCycle();
printf("%d\n",solver.d[maxn]-solver.d[minn]);
}
return ;
}