每一棵线段树是维护每一个序列前缀的值在任意区间的个数,如果还是按照静态的来做的话,那么每一次修改都要遍历O(n)棵树,时间就是O(2*M*nlogn)->TLE考虑到前缀和,我们通过树状数组来优化,即树状数组套主席树,每个节点都对应一棵主席树,那么修改操作就只要修改logn棵树,o(nlognlogn+Mlognlogn)时间是可以的,但是直接建树要nlogn*logn(10^7)会MLE我们发现对于静态的建树我们只要nlogn个节点就可以了,而且对于修改操作,只是修改M次,每次改变俩个值(减去原先的,加上现在的)也就是说如果把所有初值都插入到树状数组里是不值得的,所以我们分两部分来做,所有初值按照静态来建,内存O(nlogn),而修改部分保存在树状数组中,每次修改logn棵树,每次插入增加logn个节点O(M*logn*logn+nlogn)
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cmath>
#define ls(i) T[i].ls
#define rs(i) T[i].rs
#define w(i) T[i].w
#define Find(i) (lower_bound(LX.begin(),LX.begin()+n1,i)-LX.begin())+1 using namespace std;
const int N=+;
struct node{
int ls,rs,w;
node(){ls=rs=w=;}
}T[];
struct ope{
int i,l,r,k;
}op[];
vector<int> LX,Q1,Q2;
int n,n1,m,cnt;
int a[],root[*];
inline int lowbit(int x){
return x&-x;
}
void build(int &i,int l,int r,int x){
T[++cnt]=T[i]; i=cnt;
w(i)++;
if (l==r) return;
int m=(l+r)>>;
if (x<=m) build(ls(i),l,m,x);
else build(rs(i),m+,r,x);
}
void ins(int &i,int l,int r,int x,int v){
if (i==){ T[++cnt]=T[i]; i=cnt; }
w(i)+=v;
if (l==r) return;
int m=(l+r)>>;
if (x<=m) ins(ls(i),l,m,x,v);
else ins(rs(i),m+,r,x,v);
}
void my_ins(int pos,int x,int v){
int t=Find(x);
for (int i=pos;i<=n;i+=lowbit(i)){
ins(root[i],,n1,t,v);
}
}
int Qy(vector<int> Q1,vector<int> Q2,int l,int r,int k){
if (l==r) return l;
int c=;
int m=(l+r)>>;
for (int i=;i<Q1.size();i++) c-=w(ls(Q1[i]));
for (int i=;i<Q2.size();i++) c+=w(ls(Q2[i]));
for (int i=;i<Q1.size();i++) Q1[i]=(c>=k?ls(Q1[i]):rs(Q1[i]));
for (int i=;i<Q2.size();i++) Q2[i]=(c>=k?ls(Q2[i]):rs(Q2[i])); if (c>=k) return Qy(Q1,Q2,l,m,k);
else return Qy(Q1,Q2,m+,r,k-c);
}
void query(int l,int r,int k){
Q1.clear();Q2.clear();
Q1.push_back(root[l!=?l-+n:]);
Q2.push_back(root[r+n]);
for (int i=l-;i>;i-=lowbit(i)) Q1.push_back(root[i]);
for (int i=r;i>;i-=lowbit(i)) Q2.push_back(root[i]); int t=Qy(Q1,Q2,,n1,k);
printf("%d\n",LX[t-]);
}
void work(){
cnt=;
//for (int i=0;i<n1;i++) cout<<list[i]<<" ";cout<<endl;
memset(root,,sizeof(root));
for (int i=;i<=n;i++){
root[i+n]=root[i-+n];
int t=Find(a[i]);
build(root[i+n],,n1,t);
}
for (int i=;i<m;i++){
if (op[i].i==){
query(op[i].l,op[i].r,op[i].k);
// cout<<"*** "<<i<<endl;
}else{
my_ins(op[i].l,a[op[i].l],-);
my_ins(op[i].l,op[i].r,);
a[op[i].l]=op[i].r;
}
} }
int main(){
int Cas;scanf("%d",&Cas);
while (Cas--){
scanf("%d%d",&n,&m);
LX.clear();
for (int i=;i<=n;i++){
scanf("%d",&a[i]);LX.push_back(a[i]);
}
char s[];
for (int i=;i<m;i++){
scanf("%s",s);
if (s[]=='Q'){
op[i].i=;
scanf("%d%d%d",&op[i].l,&op[i].r,&op[i].k);
}else{
op[i].i=;
scanf("%d%d",&op[i].l,&op[i].r);
LX.push_back(op[i].r);
}
}
sort(LX.begin(),LX.end());
n1=unique(LX.begin(),LX.end())-LX.begin();
work();
} return ;
}
转自:http://www.cnblogs.com/Rlemon/archive/2013/05/24/3096264.html