D - Mr. Kitayuta's Colorful Graph
思路:我是暴力搞过去没有将答案离线,感觉将答案的离线的方法很巧妙。。
对于一个不大于sqrt(n) 的块,我们n^2暴力枚举, 对于大于sqrt(n)的块,我们暴力枚举答案。
这样就能做到严格sqrt(n) * n
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ; int n, m, cnt, fa[N], a[N], b[N], c[N];
unordered_map<int, bool> mp[N];
map<PII, int> ans;
vector<PII> vec[N];
int getRoot(int x) {
return fa[x] == x ? x : getRoot(fa[x]);
} int main() {
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i++) {
scanf("%d%d%d", &a[i], &b[i], &c[i]);
vec[c[i]].push_back(mk(a[i], b[i]));
}
for(int i = ; i <= n; i++) fa[i] = i;
for(int i = ; i <= m; i++) {
map<int, int> ma;
for(PII t : vec[i]) {
int x = getRoot(t.fi), y = getRoot(t.se);
if(x != y) fa[x] = y;
}
for(PII t : vec[i]) {
int x = getRoot(t.fi), y = getRoot(t.se);
if(ma.find(x) != ma.end()) {
mp[t.fi][ma[x]] = true;
} else {
cnt++;
mp[t.fi][cnt] = true;
ma[x] = cnt;
}
if(ma.find(y) != ma.end()) {
mp[t.se][ma[y]] = true;
} else {
cnt++;
mp[t.se][cnt] = true;
ma[y] = cnt;
}
}
for(PII t : vec[i]) {
fa[t.fi] = t.fi;
fa[t.se] = t.se;
}
} int q; scanf("%d", &q);
while(q--) {
int u, v;
scanf("%d%d", &u, &v);
if(mp[u].size() > mp[v].size()) swap(u, v);
if(ans.find(mk(u, v)) != ans.end()) {
printf("%d\n", ans[mk(u, v)]);
} else {
int num = ;
for(auto t : mp[u]) {
if(mp[v].find(t.fi) != mp[v].end()) num++;
}
printf("%d\n", num);
ans[mk(u, v)] = num;
}
}
return ;
} /*
*/