#6074. 「2017 山东一轮集训 Day6」子序列
分析:
首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j。于是有转移方程:
$$ f_{i,j}= \begin{cases} f_{i-1,j}&,j\neq S_i\\ \sum_{k=1}^{m+1}f_{i-1,k}&,j=S_i \end{cases} $$
表示如果当前j不是s[i]的话,最靠后的结尾的j还是那个位置,从i-1转移即可,否则,最靠后的s[i]变成i这个位置,于是加上前面所有最靠后出现的字符即可(即从i往前走到k,如果s[k]在k+1~i之间没有s[k]了,就加上)。
这个dp还有一个形象的解释:每个i向它后面第一个出现的字符连有向边(即如果i->j有边,那么i+1~j之间没有s[[j]),然后DAG上的路径数就是答案。
然后可以对每个位置求一个$10 \times 10$的转移矩阵$A_i$,$F_i$是一个$10 \times 1$的矩阵,有$F_i = A_i \times F_{i - 1}$。
于是可以分别维护矩阵的前缀积,和逆矩阵的前缀积。
然后复杂度可以做到$nc^3+qc^2$,由于这个矩阵的性质,可以$nc^2$预处理,所以可以做到$nc^2+qc^2$,至于如何做到$nc+qc$,可以看这。
代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<bitset>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = 1e9 + ;
struct Matrix{ int a[][]; Matrix() { memset(a, , sizeof(a)); } } s1[N], s2[N];
char str[N];
int s[N], tmp[]; inline void add(int &x,int y) { x += y; if (x >= mod) x -= mod; }
inline void sub(int &x,int y) { x -= y; if (x < ) x += mod; }
void init(int n) {
for (int i = ; i < ; ++i) s1[].a[i][i] = s2[].a[i][i] = ;
for (int i = ; i < ; ++i) s1[].a[i][i] = ;
for (int i = ; i < ; ++i) s1[].a[s[]][i] = ;
for (int i = ; i <= n; ++i) {
s1[i] = s1[i - ];
for (int j = ; j < ; ++j) tmp[j] = ;
for (int j = ; j < ; ++j)
for (int k = ; k < ; ++k) add(tmp[j], s1[i - ].a[k][j]);
for (int j = ; j < ; ++j) s1[i].a[s[i]][j] = tmp[j];
}
for (int i = ; i < ; ++i) s2[].a[s[]][i] = mod - ;
for (int i = ; i < ; ++i) s2[].a[i][i] = ;
for (int i = ; i <= n; ++i) {
s2[i] = s2[i - ];
for (int j = ; j < ; ++j) for (int k = ; k < ; ++k) if (k != s[i]) sub(s2[i].a[j][k], s2[i - ].a[j][s[i]]);
}
}
int main() {
scanf("%s", str + );
int n = strlen(str + );
for (int i = ; i <= n; ++i) s[i] = str[i] - 'a';
init(n);
for (int m = read(); m --; ) {
int l = read(), r = read();
for (int i = ; i < ; ++i) tmp[i] = ;
for (int i = ; i < ; ++i) add(tmp[i], s2[l - ].a[i][]);
int sum = ;
for (int i = ; i < ; ++i)
for (int j = ; j < ; ++j)
add(sum, 1ll * s1[r].a[i][j] * tmp[j] % mod);
cout << (sum - + mod) % mod << "\n";
}
return ;
}