洛谷P3327 约数个数和 结论+莫比乌斯反演

时间:2023-03-08 22:45:34

原题

就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数)

首先有引理(然而并没有证明):

\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)

带到原式里得到:

\(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)

利用\(\mu\)函数的性质把方括号换掉:

\(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{d|gcd(x,y)}\mu(d)\)

交换枚举主体:

\(ans=\sum\limits_{x=1}\sum\limits_{y=1}\sum\limits_{i=1}^{\lfloor\frac{N}{x}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{M}{y}\rfloor}\sum\limits_{d|gcd(x,y)}\mu(d)\)

进而得到:

\(ans=\sum\limits_{x=1}\sum\limits_{y=1}\lfloor\frac{N}{x}\rfloor\lfloor\frac{M}{y}\rfloor\sum\limits_{d|gcd(x,y)}\mu(d)\)

首先枚举\(d\):

\(ans=\sum\limits_{d=1}^{min\{N,M\}}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{N}{d}\rfloor}\sum\limits_{y=1}^{\lfloor\frac{M}{d}\rfloor}\lfloor\frac{N}{x}\rfloor\lfloor\frac{M}{y}\rfloor\)

后面的顺序是无所谓的,交换一下:

\(ans=\sum\limits_{d=1}^{min\{N,M\}}\mu(d)\sum\limits_{x=1}^{\lfloor\frac{N}{d}\rfloor}\lfloor\frac{N}{x}\rfloor\sum\limits_{y=1}^{\lfloor\frac{M}{d}\rfloor}\lfloor\frac{M}{y}\rfloor\)

然后发现只要预处理一下后面的东西就可以整除分块了

贴一下代码:

#include <bits/stdc++.h>

using namespace std;

#define N 50000

int cnt, prime[N+5], mu[N+5], sum[N+5], notprime[N+5];
int b[N+5]; void init()
{
mu[1] = sum[1] = notprime[1] = 1;
for(int i = 2; i <= N; ++i)
{
if(!notprime[i]) prime[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i*prime[j] <= N; ++j)
{
notprime[i*prime[j]] = 1;
if(i%prime[j] == 0)
{
mu[i*prime[j]] = 0;
break;
}
mu[i*prime[j]] = mu[i]*-1;
}
sum[i] = sum[i-1]+mu[i];
}
for(int i = 1; i <= N; ++i)
{
for(int l = 1, r; l <= i; l = r+1)
{
r = min(i/(i/l), i);
b[i] += (r-l+1)*(i/l);
}
}
} int T, n, m; int main()
{
scanf("%d", &T);
init();
while(T--)
{
scanf("%d%d", &n, &m);
long long ans = 0;
if(n > m) swap(n, m);
for(int l = 1, r; l <= n; l = r+1)
{
r = min(min(n/(n/l), m/(m/l)), n);
ans += 1LL*(sum[r]-sum[l-1])*b[n/l]*b[m/l];
}
printf("%lld\n", ans);
}
return 0;
}