http://acm.hdu.edu.cn/showproblem.php?pid=3401
题意:
有一个股市,现在有T天让你炒股,在第i天,买进股票的价格为APi,卖出股票的价格为BPi,同时最多买进股票的数量为ASi,卖出股票的数量为BSi。一次交易之后要隔W天之后才能再次交易,并且手上最多持股maxP,问最多可以炒到多少钱。
思路:
首先列一个DP方程:
分别代表不买不卖,买进股票,卖出股票三种情况(上面 (j-k)<=AS[i] , (k-j)<=BS[i])。
那么这里需要枚举r和k的情况,由于相邻两次交易必须隔W天,也就是如果第i天交易了,那么至少要到第i+w+1天才能再次交易。如果我们在第i天要交易股票,那么前w天都是不买不卖的情况,那么前w天的情况都是一样的,所以这以r直接为i-w-1即可。
最后是将上面的式子化简一下:
可以看见右边是与k有关的表达式,左边是与j有关的表达式,右边我们只需要选择最大的值即可,那么这就可以用单调队列来优化了。
以买股票为例子说明:
因为是买股票,所以j肯定是大于k的,所以j从小到大枚举。每次计算出右边的值,单调队列保存递减值。每次取队首的最大值,当然队首元素必须满足AS[i]的条件,不满足就出队列。
#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = +; int t, maxp, w, ap[maxn], bp[maxn], as[maxn], bs[maxn], head, tail;
int dp[maxn][maxn];
struct node
{
int p;
int x;
}q[maxn]; int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&t,&maxp,&w);
for(int i=;i<=t;i++)
scanf("%d%d%d%d",&ap[i],&bp[i],&as[i],&bs[i]); for(int i=;i<=t;i++)
for(int j=;j<=maxp;j++)
dp[i][j] = -0x3f3f3f3f; for(int i=;i<=w+;i++)
for(int j=;j<=as[i];j++)
dp[i][j] = -j*ap[i]; for(int i=;i<=t;i++)
{
for(int j=;j<=maxp;j++)
dp[i][j] = max(dp[i][j],dp[i-][j]);
if(i<=w+) continue;
//买进
head = tail = ;
for(int j=;j<=maxp;j++)
{
int x = dp[i-w-][j]+j*ap[i];
while(head<tail && q[tail-].x<x) tail--;
q[tail].x = x;
q[tail++].p = j;
while(head<tail && j-q[head].p>as[i]) head++;
dp[i][j] = max(dp[i][j], q[head].x-j*ap[i]);
} //卖出
head = tail = ;
for(int j=maxp;j>=;j--)
{
int x = dp[i-w-][j]+j*bp[i];
while(head<tail && q[tail-].x<x) tail--;
q[tail].x = x;
q[tail++].p = j;
while(head<tail && j+bs[i]<q[head].p) head++;
dp[i][j] = max(dp[i][j], q[head].x-j*bp[i]);
}
}
int ans = ;
for(int i=;i<=maxp;i++)
ans = max(ans,dp[t][i]);
printf("%d\n",ans);
}
return ;
}