2017-08-10 21:10:08
writer:pprp
//TLE
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm> using namespace std; const int INF = 0x3f3f3f3f;
typedef long long ll;
const int maxn = ; ll dp[maxn][maxn]; const int mod = 1e9 + ; void S1()
{
for(int i = ; i <= ; i++)
{
dp[i][] = ;
dp[i][i] = ;
for(int j = ; j < i ; j++)
dp[i][j] = (i - ) * dp[i-][j] + dp[i-][j-];
}
} //a^b%m 快速幂
int quick_power_mod(int a, int b, int m)
{
int result = ;
int base = a;
while(b > )
{
if(b& == )//如果b是奇数
{
result = (result * base) % m;
}
base = (base * base)%m;
b>>=;
}
return result;
} //组合数取模 C(a,b)%p
ll composition(ll a, ll b, int p)
{
if(a < b)
return ;
if(a == b)
return ;
if(b > a - b) b = a - b; int ans = , ca = , cb = ;
for(ll i = ; i < b; i++)
{
ca = (ca * (a - i))%p;
cb = (cb * (b - i))%p;
} ans = (ca * quick_power_mod(cb,p - , p)) % p;
return ans;
} ll lucas(ll n, ll m, ll p)
{
ll ans = ;
while(n && m && ans)
{
ans = (ans * composition(n%p, m%p, p))%p;
n /= p;
m /= p;
}
return ans;
} int main()
{
S1();
int T;
cin >> T;
int N, F, B; while(T--)
{
cin >> N >> F >> B;
cout << dp[N-][F+B-]*composition(F+B-,F-,mod) <<endl;
}
return ;
}
标解:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm> using namespace std; const int INF = 0x3f3f3f3f;
typedef long long ll;
const int maxn = ; ll dps[maxn][maxn];
ll dpc[maxn][maxn]; const ll mod = 1e9 + ; void init()
{
for(int i = ; i < maxn ; i++)
{
dpc[i][] = dpc[i][i] = dps[i][i] = ;
for(int j = ; j < i ; j++)
{
dpc[i][j] = (dpc[i-][j-]+dpc[i-][j])%mod;
dps[i][j] = ((i-)*dps[i-][j])%mod + dps[i-][j-]%mod;
}
}
} int main()
{
int T;
cin >> T;
long long N, F, B;
init(); while(T--)
{
cin >> N >> F >> B;
cout << dps[N-][F+B-]*dpc[F+B-][F-]%mod <<endl;
}
return ;
}
标解中组合数是用杨辉三角求解的
杨辉三角dp法
dp[i][j]=dp[i-1][j-1]+dp[i-1][j]
O(n^2)~O(1)