在Windows环境上搭建Hadoop环境需要安装jdk1.7或以上版本.有了jdk之后,就可以进行Hadoop的搭建.
首先下载所需要的包:
1. Hadoop包: hadoop-2.5.2.tar.gz
2. Eclipse插件: hadoop-eclipse-plugin-2.5.2.jar
3. Hadoop在Windows运行插件包: hadooponwindows-master.zip
4. 测试数据: 1901和1902年天气预报文件
以上文件下载链接: https://pan.baidu.com/s/1R9qFdFDWHN1NnCW83VQiJg 密码: lkpp
将以上的文件都下载下来之后,进行Hadoop的安装.
第一步: 安装hadoop
1. 将下载的 hadoop-2.5.2.tar.gz 解压到指定目录, 例如我的就是放在 C:\hadoop, 一下所有的例子都以该目录为标准
2. 配置Hadoop环境变量
2. 修改Hadoop配置文件
2.1 编辑 %HADOOP_HOME%\etc\hadoop 下的core-site.xml文件, 加入以下内容
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/C:/hadoop/hadoop-2.5.2/workplace/tmp</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>/C:/hadoop/hadoop-2.5.2/workplace/name</value>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
2.2 编辑 %HADOOP_HOME%\etc\hadoop 下的mapred-site.xml文件, 加入以下内容
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>hdfs://localhost:9001</value>
</property>
</configuration>
2.3 编辑 %HADOOP_HOME%\etc\hadoop 下的hdfs-site.xml文件, 加入以下内容
<configuration>
<!-- 这个参数设置为1,因为是单机版hadoop -->
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/C:/hadoop/hadoop-2.5.2/workplace/data</value>
</property>
</configuration>
2.4 编辑 %HADOOP_HOME%\etc\hadoop 下的yarn-site.xml文件, 加入以下内容
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
2.5 编辑 %HADOOP_HOME%\etc\hadoop 下的hadoop-env.cmd文件,将JAVA_HOME用 @rem注释掉,编辑为本机JAVA_HOME的路径,然后保存
3. 配置Hadoop在Windows上的运行环境
将下载的 hadooponwindows-master.zip 解压, 并将bin目录下的所有文件替换到 %HADOOP_HOME%\bin 目录下
4. DOM窗口运行以下命令:
hdfs namenode -format
5. DOM窗口切换到 %HADOOP_HOME%\sbin 目录, 可以进行Hadoop的启动和停止
启动: start-all.cmd
停止: stop-all.cmd
5.1 运行 start-all.cmd 如果出现类似于以下界面说明Hadoop在Windows上部署成功
6. 根据 core-site.xml 的配置, 接下来就可以通过:hdfs://localhost:9000 来对hdfs进行操作了
6.1 创建输入目录
hadoop fs -mkdir hdfs://localhost:9000/user/
hadoop fs -mkdir hdfs://localhost:9000/user/input
6.2 上传测试数据到目录
hadoop fs -put C:\hadoop\data\1901 hdfs://localhost:9000/user/input
hadoop fs -put C:\hadoop\data\1902 hdfs://localhost:9000/user/input
6.3 查看上传上去的文件
hadoop fs -ls hdfs://localhost:9000/user/input
出现以下界面说明上传成功
7. 安装Eclipse插件
7.1 将下载的 hadoop-eclipse-plugin-2.5.2.jar 文件放到Eclipse安装目录下的plugins下, 重启Eclipse
7.2 点击菜单栏 Windows–>Preferences ,如果插件安装成功,就会出现如下图
7.3 配置Hadoop安装目录
7.4 调出 Map/Reduce 视图
7.5 点击 Map/Redure Locations 窗口,空白处右键New Hadoop location
7.6 填写参数,连接参数, 然后 Finish
8. 编写测试类:
8.1 创建Map/Redure Project
右键 –> New –> Other –> Map/Redure Project
8.2 编写测试代码
package hadoop.code01.maxtemperature; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.log4j.BasicConfigurator; public class MaxTemperature { public static class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final Integer MISSING = 9999; @Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String year = line.substring(15, 19);
System.out.println("line: " + line);
System.out.println("year: " + year);
Integer air;
if (line.charAt(87) == '+') {
air = Integer.parseInt(line.substring(88, 92));
} else {
air = Integer.parseInt(line.substring(87, 92));
}
String quality = line.substring(92, 93);
System.out.println("quality: " + quality);
if (!MISSING.equals(air) && quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(air));
}
}
} public static class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
Integer maxValue = Integer.MIN_VALUE;
System.out.println("maxValue0: " + maxValue);
for (IntWritable value : values) {
System.out.println("maxValue1: " + maxValue);
maxValue = Math.max(maxValue, value.get());
}
context.write(key, new IntWritable(maxValue));
}
} public static class Temperature { public static void main(String[] args) throws Exception, ClassNotFoundException, InterruptedException {
BasicConfigurator.configure(); // 自动快速地使用缺省Log4j环境。
System.out.println("kaishi...");
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <Input path> <Output path>");
System.exit(-1);
}
Configuration conf = new Configuration();
Job job = new Job(conf); job.setJarByClass(MaxTemperature.class);
job.setJobName("maxTemperature"); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); System.out.println("jieshu...");
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
} }
8.3 执行测试
Run As –> Run Configurations
8.4 点击 Run 运行, 然后在DOM窗口执行查看输出结果
hadoop fs -ls hdfs://localhost:9000/user/output
8.5 执行 hadoop fs -cat hdfs://localhost:9000/user/output/part-r-00000 查看算法执行结果数据
至此, 第一个Hadoop例子执行成功