[Locked] Shortest Distance from All Buildings

时间:2023-03-08 22:08:45

Shortest Distance from All Buildings

You want to build a house on an empty land which reaches all buildings in the shortest amount of distance. You can only move up, down, left and right. You are given a 2D grid of values 0, 1 or 2, where:

  • Each 0 marks an empty land which you can pass by freely.

  • Each 1 marks a building which you cannot pass through.

  • Each 2 marks an obstacle which you cannot pass through.

For example, given three buildings at (0,0), (0,4), (2,2), and an obstacle at (0,2):

1 - 0 - 2 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0

The point (1,2) is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal. So return 7.

Note:
There will be at least one building. If it is not possible to build such house according to the above rules, return -1.

分析:

  这题如果不考虑obstacle的存在的话,与另一道leetcode题目一样,分成x轴和y轴,根据值为1的点的坐标,直接算出最小距离;然而多了一个obstacle,这题又更像是gates and walls这题了,不同的是,对于每个为0的点,各个建筑物到它的最近的距离都要计算出来并累加,而不是算最近距离的最小值。K为building个数,M、N分别为长和宽,时间复杂度为O(KMN),空间复杂度为O(MN)

代码:

//计算每个岛到坐标为(i, j)的building的最短距离
void dfs(int i, int j, int cur, vector<vector<int> > &dist, vector<vector<int> > &grids) {
if(cur > dist[i][j])
return;
dist[i][j] = cur++;
if(grids[i][j + ] == )
dfs(i, j + , cur, dist, grids);
if(grids[i][j - ] == )
dfs(i, j - , cur, dist, grids);
if(grids[i + ][j] == )
dfs(i + , j, cur, dist, grids);
if(grids[i - ][j] == )
dfs(i - , j, cur, dist, grids);
return;
}
//迭代计算总距离矩阵,并重置距离矩阵
void postProcess(vector<vector<int> > &dist, vector<vector<int> > &totaldist, vector<vector<int> > &grids) {
for(int i = ; i < grids.size(); i++)
for(int j = ; j < grids[].size(); j++) {
if(grids[i][j] == )
totaldist[i][j] += dist[i][j];
dist[i][j] = INT_MAX;
}
return;
}
//主要功能函数
int shortestDist(vector<vector<int> > &grids) {
//设立岗哨
grids.insert(grids.begin(), vector<int> (grids[].size(), ));
grids.push_back(vector<int> (grids[].size(), ));
for(auto &v : grids) {
v.insert(v.begin(), );
v.push_back();
}
//声明并初始化距离矩阵
vector<vector<int> > dist(grids);
for(auto &v : dist)
for(int &i : v)
i = INT_MAX;
//声明并初始化总距离矩阵
vector<vector<int> > totaldist(grids.size(), vector<int> (grids[].size(), ));
//对每个building进行扩展,计算其到周边岛屿的最小距离
for(int i = ; i < grids.size(); i++) {
for(int j = ; j < grids[].size(); j++) {
if(grids[i][j] == ) {
dfs(i, j, , dist, grids);
postProcess(dist, totaldist, grids);
}
}
}
//在总距离矩阵中找到最小距离
int sd = INT_MAX;
for(int i = ; i < grids.size(); i++)
for(int j = ; j < grids[].size(); j++)
if(grids[i][j] == )
sd = min(sd, totaldist[i][j]);
//去除岗哨,还原输入矩阵
grids.pop_back();
grids.erase(grids.begin());
for(auto &v : grids) {
v.pop_back();
v.erase(v.begin());
}
return sd;
}