python3 doc2vec文本聚类实现

时间:2023-03-08 21:58:31
import sys    #doc2vev
import gensim
import sklearn
import numpy as np from gensim.models.doc2vec import Doc2Vec, LabeledSentence TaggededDocument = gensim.models.doc2vec.TaggedDocument def get_datasest():
with open("ttt.txt", 'r') as cf:
docs = cf.readlines()
print (len(docs)) x_train = []
#y = np.concatenate(np.ones(len(docs)))
for i, text in enumerate(docs):
word_list = text.split(' ')
l = len(word_list)
word_list[l-1] = word_list[l-1].strip()
document = TaggededDocument(word_list, tags=[i])
x_train.append(document) return x_train def getVecs(model, corpus, size):
vecs = [np.array(model.docvecs[z.tags[0]].reshape(1, size)) for z in corpus]
return np.concatenate(vecs) def train(x_train, size=200, epoch_num=1):
model_dm = Doc2Vec(x_train,min_count=1, window = 3, size = size, sample=1e-3, negative=5, workers=4)
model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=70)
model_dm.save('test/test') return model_dm def test():
model_dm = Doc2Vec.load("test/test")
print(model_dm)
test_text = ['《', '舞林', '争霸' '》', '十强' '出炉', '复活', '舞者', '澳门', '踢馆']
inferred_vector_dm = model_dm.infer_vector(test_text)
print (inferred_vector_dm)
sims = model_dm.docvecs.most_similar([inferred_vector_dm], topn=10) return sims if __name__ == '__main__':
x_train = get_datasest()
model_dm = train(x_train) sims = test()
for count, sim in sims:
sentence = x_train[count]
words = ''
for word in sentence[0]:
words = words + word + ' '
print (words, sim, len(sentence[0]))
print('ok')

相关文章