题意翻译
题意:给出一个n个数组成的数列a,有t次询问,每次询问为一个[l,r]的区间,求区间内每种数字出现次数的平方×数字的值 的和。
输入:第一行2个正整数n,t。
接下来一行n个正整数,表示数列a1~an的值。
接下来t行,每行两个正整数l,r,为一次询问。
输出:t行,分别为每次询问的答案。
数据范围:1≤n,t≤2∗105,1≤ai≤106,1≤l,r≤n
题目描述
An array of positive integers a1,a2,...,an a_{1},a_{2},...,a_{n} a1,a2,...,an is given. Let us consider its arbitrary subarray al,al+1...,ar a_{l},a_{l+1}...,a_{r} al,al+1...,ar , where 1<=l<=r<=n 1<=l<=r<=n 1<=l<=r<=n . For every positive integer s s s denote by Ks K_{s} Ks the number of occurrences of s s s into the subarray. We call the power of the subarray the sum of products Ks⋅Ks⋅s K_{s}·K_{s}·s Ks⋅Ks⋅s for every positive integer s s s . The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.
You should calculate the power of t t t given subarrays.
输入输出格式
输入格式:
First line contains two integers n n n and t t t ( 1<=n,t<=200000 1<=n,t<=200000 1<=n,t<=200000 ) — the array length and the number of queries correspondingly.
Second line contains n n n positive integers ai a_{i} ai ( 1<=ai<=106 1<=a_{i}<=10^{6} 1<=ai<=106 ) — the elements of the array.
Next t t t lines contain two positive integers l l l , r r r ( 1<=l<=r<=n 1<=l<=r<=n 1<=l<=r<=n ) each — the indices of the left and the right ends of the corresponding subarray.
输出格式:
Output t t t lines, the i i i -th line of the output should contain single positive integer — the power of the i i i -th query subarray.
Please, do not use %lld specificator to read or write 64-bit integers
in C++. It is preferred to use cout stream (also you may use %I64d).
输入输出样例
3 2
1 2 1
1 2
1 3
3
6
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
20
20
20
说明
Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):
Then K1=3 , K2=2 , K3=1, so the power is equal to 32⋅1+22⋅2+12⋅3=20.
Solution:
本题莫队水题。
维护一下区间内每个数的出现次数,每次左右移动指针的同时,更新下数的次数以及平方和就好了。
代码:
/*Code by 520 -- 10.19*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define calc(x) (1ll*x*x)
using namespace std;
const int N=;
int n,m,a[N],c[N],bl[N];
ll ans[N],tot;
struct node{
int l,r,id;
bool operator < (const node &a) const {return bl[l]==bl[a.l]?r<a.r:l<a.l;}
}t[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int x){tot-=calc(c[a[x]])*a[x],c[a[x]]++,tot+=calc(c[a[x]])*a[x];} il void del(int x){tot-=calc(c[a[x]])*a[x],c[a[x]]--,tot+=calc(c[a[x]])*a[x];} int main(){
n=gi(),m=gi(); int blo=sqrt(n);
For(i,,n) a[i]=gi(),bl[i]=(i-)/blo+;
For(i,,m) t[i]=node{gi(),gi(),i};
sort(t+,t+m+);
for(RE int i=,l=,r=;i<=m;i++){
while(l<t[i].l) del(l),l++;
while(l>t[i].l) --l,add(l);
while(r<t[i].r) ++r,add(r);
while(r>t[i].r) del(r),r--;
ans[t[i].id]=tot;
}
For(i,,m) printf("%lld\n",ans[i]);
return ;
}