BZOJ1297 [SCOI2009]迷路 矩阵乘法

时间:2023-03-08 21:44:02

欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


题目传送门 - BZOJ1297


题意概括

  有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,问总共有多少种不同的路径吗? 注意:不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。


题解

  矩阵乘法。

  把一个点拆成9个,分别是time+0,time+1,time+2,...,time+8。

  然后根据输入转移,构建矩阵即可。

  然后基础矩阵跑一跑就可以了。


插曲

  悲催,一个小错找了1个小时:

  把设置单位矩阵打成这样了……

  BZOJ1297 [SCOI2009]迷路  矩阵乘法


代码

#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=10+5,maxm=N*10,mod=2009;
int n,m,t;
char str[N][N];
struct Mat{
int v[maxm][maxm];
void set(){
memset(v,0,sizeof v);
}
void set1(){
set();
for (int i=0;i<m;i++)
v[i][i]=1;
}
Mat operator * (Mat a){
Mat ans;
ans.set();
for (int i=0;i<m;i++)
for (int j=0;j<m;j++)
for (int k=0;k<m;k++)
ans.v[i][j]=(ans.v[i][j]+v[i][k]*a.v[k][j])%mod;
return ans;
}
}M,Mans;
Mat MatPow(Mat x,int y){
Mat M,xx=x;
M.set1();
while (y){
if (y&1)
M=M*xx;
xx=xx*xx;
y>>=1;
}
return M;
}
int Hash(int x,int y){
return x*9+y;
}
int main(){
scanf("%d%d",&n,&t);
m=n*9;
for (int i=0;i<n;i++)
scanf("%s",str[i]);
M.set();
for (int i=0;i<n;i++)
for (int j=0;j<8;j++)
M.v[Hash(i,j+1)][Hash(i,j)]++;
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
if (str[i][j]!='0')
M.v[Hash(i,0)][Hash(j,str[i][j]-'1')]++;
Mans=MatPow(M,t);
printf("%d",Mans.v[0][Hash(n-1,0)]);
return 0;
}