參考:http://apps.topcoder.com/wiki/display/tc/SRM+628
開始不知道怎么求期望。普通方法 p1*c1 + p2 *c2 + ... 行不通,看了Editoral才发现原来能够用dp的方法求期望,基本思想是令函数 f(t, r)为剩余 t 个 levels 还须要的花费的时间。r为一定须要获得2个stars的levels数量,则有:
当 t != r 时,须要获得one or two stars, f(t, r) = 1 + p0 * f(t, r) + p1 * f(t-1, r) + p2 * f(t-1, r-1). 解得 f(t, r) = ( 1 + p1 * f(t-1, r) + p2 * f(t-1, r-1) ) / (1 - p0).
当 t == r时,必须获得two stars, f(t, r) = 1 + (1 - p2) * f(t, r) + p2 * f(t-1, r-1). 解得 f(t, r) = ( 1 + p2 * f(t-1, r-1) ) / p2.
处理的顺序为按p2非递减就可以。
代码:
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <iostream>
#include <sstream>
#include <iomanip> #include <bitset>
#include <string>
#include <vector>
#include <stack>
#include <deque>
#include <queue>
#include <set>
#include <map> #include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
using namespace std; #define CHECKTIME() printf("%.2lf\n", (double)clock() / CLOCKS_PER_SEC)
typedef pair<int, int> pii;
typedef long long llong;
typedef pair<llong, llong> pll;
#define mkp make_pair /*************** Program Begin **********************/
const int MAX_N = 2001;
double dp[MAX_N][MAX_N];
class DoraemonPuzzleGame {
public:
int N;
vector <pair<double, double>> prob;
double rec(int t, int r)
{
double & res = dp[t][r];
// base case
if (0 == t) {
res = 0;
return res;
}
if (res > -0.5) {
return res;
}
res = 0.0;
double p1 = prob[N - t].second;
double p2 = prob[N - t].first;
if (t != r) { // get one or two stars int this level
res = (1 + p1 * rec(t-1, r) + p2 * rec(t-1, max(0, r-1))) / (p1 + p2);
} else { // must get two stars
res = (1 + p2 * rec(t-1, max(0, r-1))) / p2;
}
return res;
}
double solve(vector <int> X, vector <int> Y, int m) {
N = X.size();
for (int i = 0; i < MAX_N; i++) {
for (int j = 0; j < MAX_N; j++) {
dp[i][j] = -1.0;
}
} for (int i = 0; i < X.size(); i++) {
prob.push_back(mkp(Y[i] / 1000.0, X[i] / 1000.0));
}
sort(prob.begin(), prob.end()); return rec(N, m - N);
} }; /************** Program End ************************/
版权声明:本文博主原创文章,博客,未经同意不得转载。