ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)

时间:2023-03-08 20:48:48

题意:

给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出

分析:

无源汇有上下界最大流模板, 记录每个点流的 in 和 out , 然后如果一个点 i 的in > out,  从源点i连一条边到in, out > in 就从i 连一条边到 v.

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int maxN = 1e5 + ;
const int maxM = 2e6 + ;
const int INF = 1e9 + ;
int n, m, S, T, ecnt;
int in[maxN], out[maxN], B[maxN];
int head[maxN];
struct {
int to, nxt, w;
} edge[maxM];
void init() {
memset(in, , sizeof(in));
memset(out, , sizeof(out));
memset(B, , sizeof(B));
ecnt = ;
memset(head, -, sizeof(head));
}
void addEdge(int u, int v, int w) {
edge[ecnt].nxt = head[u];
edge[ecnt].to = v;
edge[ecnt].w = w;
head[u] = ecnt++;
}
int depth[maxN]; bool bfs() {
memset(depth, -, sizeof(depth));
queue<int> q;
depth[S] = ;
q.push(S);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; i != -; i = edge[i].nxt) {
int v = edge[i].to, w = edge[i].w;
if(w > && depth[v] == -) { //若该残量不为0,且V[i]还未分配深度,则给其分配深度并放入队列
depth[v] = depth[u] + ;
q.push(v);
}
}
}
if(depth[T] == -)
return false;
return true;//当汇点的深度不存在时,说明不存在分层图,同时也说明不存在增广路
}
int dfs(int u, int flow) { //u为当前节点 , flow为当前流量
if(u == T) //已经到达汇点, 直接返回
return flow; for(int i = head[u]; i != -; i = edge[i].nxt) {
int v = edge[i].to, w = edge[i].w;
if((depth[v] == depth[u] + ) && (w != )) { //注意这里要满足分层图和残量不为0两个条件
int di = dfs(v, min(flow, w));
if(di > ) {
edge[i].w -= di;
edge[i ^ ].w += di; //边是相反的两条, 奇数-1 偶数+1
return di;
}
}
}
return ; //没有増广路
}
int Dinic() {
int ans = , d = ;
while(bfs()) {
while(d = dfs(S, INF))
ans += d;
}
return ans;
}
int main() {
// freopen("1.txt","r", stdin);
ios::sync_with_stdio(false);
int Test;
cin >> Test;
while(Test--) {
cin >> n >> m;
init();
S = n + , T = n + ;
for(int i = ; i < m; i++) {
int u, v, b, c;
cin >> u >> v >> b >> c;
addEdge(u,v,c - b);
addEdge(v,u, );
B[i] = b;
out[u] += b;//记录入流
in[v] += b;// 记录出流
} int sum = ; for(int i = ; i <= n; i++) { //加边
int tmp = in[i] - out[i];
if(tmp > ) {
addEdge(S, i, tmp);
addEdge(i, S, );
sum += tmp;
} else {
addEdge(i, T, -tmp);
addEdge(T, i, );
}
} int ans = Dinic(); if(ans == sum) {
puts("YES");
for(int i = ; i < m; i ++)
printf("%d\n",B[i] + edge[i * + ].w); //输出的是下限 + 反向边
}else{
puts("NO");
}
puts("");
}
}