简介
import pandas as pd # 在数据挖掘前一个数据分析、筛选、清理的多功能工具
'''
pandas 可以读入excel、csv等文件;可以创建Series序列,DataFrame表格,日期数组data_range
'''
数据类型
# 将excel文件,csv文件读取并转换为pandas的DataFrame
# df_score = pd.read_csv()
df_score = pd.read_excel('./score.xlsx')
# df_score.values #数据
# df_score.columns #列名
# print df_score.describe() #计算表的各项数据,count,mean,std,中位数等 # 创建一个默认索引从0开始的Series
s = pd.Series([1, 2, 3, 4, 5, 6])
# 创建自定义索引的数组,索引由index指定,和前面数组依次对应
s = pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f'], dtype=int)
# 使用字典创建一个DataFrame,字典的Key会自动成为列名,一个Key默认对应一列数据
df1 = pd.DataFrame({'math': [1, 2, 3, 4, 5], 'physic': [5, 6, 7, 8, 9]}, index=['a', 'b', 'c', 'd', 'e'])
'''
# df1.values 数据
# df1.head(2) 前两行数据
# df1.tail(2) 最后两行数据
# df1.index 索引
# df1.columns 列名
'''
# 生成从20180101开始的时间序列,peroids是增加量,默认增加单位是天D,H小时,s秒
dates = pd.date_range('', periods=10, freq='D')
# 创建使用时间索引的Series
# s = pd.Series(range(10),index=dates)
# 取出指定间隔的行数据
# s['2018-01-01':'2018-01-05']
# print dates
票房分析
df_imdb = pd.read_csv('./IMDB.csv') # print df_imdb
# print df_imdb.columns
# df_imdb['Title'].head(5) #选出Title列的前五行
# df_imdb['Title'].tail(3)
# df_imdb.Title.head(3) #同[]的形式
# df_imdb['Revenue (Millions)'].max() #最大票房
# df_imdb['Revenue (Millions)'].idxmax() #最大票房的索引
# df_imdb[50:51]
# df_imdb[50:51]['Title']
# df_imdb[50:51]['Revenue (Millions)'] #取出50行,不包括51行
# 取出50-56行,收尾都包含,第一维度是行,第二维度是列
# df_imdb.loc[50:56,['Director','Year']]
# df_imdb[50:56].loc[:,'Director','Year']
# 取出1-5行(不包含第5行),2-4(不包含第4列)列的数据,使用整数索引操作,与numpy用法类似
# df_imdb.iloc[1:5,2:4]
# 统计Director列中不同导演出现的次数
# df_imdb['Director'].value_counts()
# 将票房大于5亿美元的电影选出来
# df_imdb[df_imdb['Revenue (Millions)']>500].Director
# df_imdb[df_imdb['Revenue (Millions)']>700]['Title']
# 将电影风格描述中含有Sci-Fi(科幻) 关键字的找出
# df_imdb[df_imdb['Genre'].str.contains('Sci-Fi')] # 将缺失数据(NaN)填充为0,也可以自己根据项目需求指定其他数据
# df_score.fillna(0)
# 将缺失数据的行移除(默认操作,可以使用axis=1指定删除列df_score.dropna(axis=1))
# 0删除行,1删除列
# df_score.dropna()
# 在DataFram中增加一列平均值avg,计算当前DataFram中每行的平均值作为avg的数据
# 前后赋值数据的行数要对应,axis=1表示按行计算,axis=0(默认值),表示按列计算
# df_score['avg'] = df_score.mean(axis=1)
# 按照性别分组并求和指定成绩
# df_score.iloc[:,4:7].groupby(u'性别').sum()
# df_score.loc[:,[u'音乐',u'性别']].groupby(u'性别').sum()
# 按照男女分组并绘图,bar柱状图,pie饼状图
# df_score[u'性别'].value_counts().plot(kind='bar')
# df_score[u'性别'].value_counts().plot(kind='pie')
# & 数学大于80且化学大于60
# df_score[(df_score[u'数学']>80) &(df_score[u'化学']>60) ] # 使用lambda,配合apply方法将日期中的指定年份或月份等提取出来
# apply函数会将lambda一次作用到数据集的每个元素
# datas = pd.Series(['20190901','20190902','20190903'])
# datas.apply(lambda x:x[0:4])
# datas.apply(lambda x:x[4:6]) # 创建一个数据的副本
# df_copy = df.copy()
# df_copy['R_Sum'] = df['SibSp']+df['Parch'] # 计算数学列的总和、平均值等,里面的字符串必须有同名函数
# df[u'数学'].agg(['sum','mean','max','std']) # pandas(Series、DataFrame)类型转换为numpy(array)类型
# df[u'数学'].values
# df.loc[:,[u'数学',u'化学']].values # 按照指定列的值排序,可指定正序倒序,默认正序
# df[u'数学'].sort_values()
# 按照索引排序
# df[u'数学'].sort_index()
# df[u'数学'].sort_values(ascending=False)
# 添加新列sum,值为每行总和,并倒序排列
# df['sum'] = df.sum(axis=1)
# df[u'sum'].sort_values(ascending=False) # 取出Embarked,Survived字段,按照两个字段顺序做层次分组,然后做计算总和
# r = df.loc[:,['Embarked','Survived']].groupby(['Embarked','Survived']).size()
# r.C
# r.C[1]
# r.Q
# r.Q[0]
# r.Q[1]
# r1 = df.loc[:,['Embarked','Survived']].groupby(['Survived','Embarked']).size()
# r2 = df.loc[:,['Embarked','Survived']].groupby('Embarked').size()
# r3 = df.loc[:,['Embarked','Survived']].groupby('Survived').size()
运行结果
"""
上面的运行结果 r
Embarked Survived
C 0 75
1 93
Q 0 47
1 30
S 0 427
1 217
dtype: int64 r.C结果
Survived
0 75
1 93
dtype: int64 r.C[1]结果
93 r1结果
Survived Embarked
0 C 75
Q 47
S 427
1 C 93
Q 30
S 217
dtype: int64 r2结果
Embarked
C 168
Q 77
S 644
dtype: int64 r3结果
Survived
0 549
1 342
dtype: int64
"""
标注:
'''
1.axis转换行列
2.DataFrame筛选一行或一列时会转化为Series类型,可以直接后面加[数字]直接进行选择,但Series不能使用DataFrame的方法(groupby等)
3.筛选出来的数据的索引仍是原索引,不会重新排列新索引
'''
统计拍片数前10的某导演,指导电影的总票房
def piaofang():
director10 = df_imdb['Director'].value_counts().head(10)
# print director10.index[0]
revenues = 0
for d in director10.index:
print df_imdb[df_imdb['Director'] == d]['Revenue (Millions)'].sum() # piaofang() # df_imdb[df_imdb['Director']=='']['Revenue (Millions)'].sum()
票房分析
特征
'''
PassengerId:乘客的唯一标志
Survived:1获救,0死亡
Pclass:座舱等级 3最好,1最差
Name,Sex,Age,
SibSp:船上有没有兄弟姐妹
Parch:父母等直系亲属是否在船上
Ticket,
Fare:票价或消费
Cabin:座舱号
Embarked:从哪个港口登船
891
'''
导入类库
import numpy as np
import matplotlib.pyplot as pt
import pandas as pd
准备数据
titanic = pd.read_csv('./Titanic.csv') titanic.fillna(int(titanic[u'Age'].mean()))
测试代码
# print titanic['Age'] # print titanic[u'Age'].mean()
# print titanic.loc[:,u'Survived'].value_counts() #存活比例
# print titanic.loc[:,u'Survived'].count() #总人数 # print titanic.loc[:, u'Sex'].value_counts() #男女分类
# print titanic[titanic[u'Sex'] == u'male']['Survived'].value_counts() #男性生死分类 # print titanic.columns
# print titanic[titanic[u'Age'] <= 18][u'Survived'].value_counts()
# print titanic[(titanic[u'Age'] > 18) & (titanic[u'Age'] < 60)][u'Survived'].value_counts()
# print titanic[titanic[u'Age'] >= 60][u'Survived'].value_counts() # print titanic[u'Fare']
# print titanic[u'Fare'].max() #贫富差距
# print titanic[u'Fare'].min() # print titanic[u'Pclass'].value_counts()
# print titanic[u'Pclass'].value_counts()[1]
# print titanic[u'Pclass'].value_counts()[3] #座舱
# print titanic[titanic[u'Pclass'] == 1]['Survived'].value_counts()
# print titanic[titanic[u'Pclass'] == 3]['Survived'].value_counts() # print titanic[u'SibSp'].value_counts()
# print titanic[u'Parch'].value_counts() # print titanic[u'Embarked'].value_counts()
案例源码
class Titanic(object):
def __init__(self):
self.data = titanic # 1.存活率是多少
def rate_survive(self):
survived = self.data.loc[:, 'Survived'].value_counts()[1]
death = self.data.loc[:, 'Survived'].value_counts()[0]
rate = float(survived) / (float(death) + float(survived))
print '总人数:{},存活人数:{},死亡人数:{}'.format(survived + death, survived, death)
return u'存活率:' + '%.2f' % rate # 2.哪个年龄段存活率最高
def max_survive(self):
age18_survived = self.data[self.data[u'Age'] <= 18][u'Survived'].value_counts()[1]
age18_death = self.data[self.data[u'Age'] <= 18][u'Survived'].value_counts()[0]
age18_rate = float(age18_survived) / (float(age18_survived) + float(age18_death)) age1860_survived = self.data[(self.data[u'Age'] > 18) & (self.data[u'Age'] < 60)][u'Survived'].value_counts()[1]
age1860_death = self.data[(self.data[u'Age'] > 18) & (self.data[u'Age'] < 60)][u'Survived'].value_counts()[0]
age1860_rate = float(age1860_survived) / (float(age1860_survived) + float(age1860_death)) age60_survived = self.data[self.data[u'Age'] >= 60][u'Survived'].value_counts()[1]
age60_death = self.data[self.data[u'Age'] >= 60][u'Survived'].value_counts()[0]
age60_rate = float(age60_survived) / (float(age60_survived) + float(age60_death)) rate = [age18_rate, age60_rate, age1860_rate]
age_data = ['18岁以下', '18-60岁', '60岁以上']
max_rate = max(rate)
age_range = age_data[rate.index(max(rate))]
return '存活率最高的年龄段是{},存活率为{}'.format(age_range, max_rate) # 3.女性存活率是否高于男性
def than_survive(self):
male_survied = self.data[self.data[u'Sex'] == u'male'][u'Survived'].value_counts()[1]
male_death = self.data[self.data[u'Sex'] == u'male'][u'Survived'].value_counts()[0]
rate_male = float(male_survied) / (float(male_survied) + float(male_death))
print '男性共有{}人,存活{}人,死亡{}人'.format(male_death + male_survied, male_survied, male_death)
female_survied = self.data[self.data[u'Sex'] == u'female'][u'Survived'].value_counts()[1]
female_death = self.data[self.data[u'Sex'] == u'female'][u'Survived'].value_counts()[0]
rate_female = float(female_survied) / (float(female_survied) + float(female_death))
print '女性共有{}人,存活{}人,死亡{}人'.format(female_death + female_survied, female_survied, female_death)
if rate_male > rate_female:
return u'男性存活率更高,存活率为:%.2f' % rate_male
else:
return u'女性存活率更高,存活率为:%.2f' % rate_female # 4.船上是否出现贫富差距
def poor_wealth(self):
max_wealth = self.data[u'Fare'].max()
max_poor = self.data[u'Fare'].min()
if max_wealth - max_poor > 500:
return '船上乘客最多消费了{},最少消费了{},存在贫富差距'.format(max_wealth, max_poor)
else:
return '船上乘客最多消费了{},最少消费了{},不存在贫富差距'.format(max_wealth, max_poor) # 5.头等舱乘客的存活率是否高于经济舱
def pclass_survive(self):
pclass1_survived = self.data[self.data[u'Pclass'] == 1]['Survived'].value_counts()[1]
pclass1_death = self.data[self.data[u'Pclass'] == 1]['Survived'].value_counts()[0]
pclass1_rate = float(pclass1_survived) / (float(pclass1_survived) + float(pclass1_death)) pclass3_survived = self.data[self.data[u'Pclass'] == 3]['Survived'].value_counts()[1]
pclass3_death = self.data[self.data[u'Pclass'] == 3]['Survived'].value_counts()[0]
pclass3_rate = float(pclass3_survived) / (float(pclass3_survived) + float(pclass3_death)) if pclass3_rate > pclass1_rate:
return '头等舱乘客存活率更高,存活率为{}'.format(pclass3_rate)
else:
return '经济舱乘客存活率更高,存活率为{}'.format(pclass1_rate) # 6.有亲属在船上乘客比率,有亲属是否会影响存活率
def family_survive(self):
has_family = self.data[(self.data[u'Parch'] != 0) | (self.data[u'SibSp'] != 0)][u'PassengerId'].count()
no_family = self.data[(self.data[u'Parch'] == 0) & (self.data[u'SibSp'] == 0)][u'PassengerId'].count()
rate_family = float(has_family) / (float(has_family) + float(no_family)) has_family_survived = \
self.data[(self.data[u'Parch'] != 0) | (self.data[u'SibSp'] != 0)][u'Survived'].value_counts()[1]
has_family_death = \
self.data[(self.data[u'Parch'] != 0) | (self.data[u'SibSp'] != 0)][u'Survived'].value_counts()[0]
has_family_rate = float(has_family_survived) / (float(has_family_survived) + float(has_family_death)) no_family_survived = \
self.data[(self.data[u'Parch'] == 0) & (self.data[u'SibSp'] == 0)][u'Survived'].value_counts()[1]
no_family_death = \
self.data[(self.data[u'Parch'] == 0) & (self.data[u'SibSp'] == 0)][u'Survived'].value_counts()[0]
no_family_rate = float(no_family_survived) / (float(no_family_survived) + float(no_family_death)) print '船上乘客中有亲属也在船上的有{}人,无亲属在船上的有{}人,有亲属在船上的乘客的比率为{}'.format(has_family, no_family, rate_family)
if has_family_rate > no_family_rate:
return '有亲属在船上的乘客存活率更高,存活率为{}'.format(has_family_rate)
else:
return '无亲属在船上的乘客存活率更高,存活率为{}'.format(no_family_rate) # 7.从哪个港口登船是否影响获救
def emarked_survive(self):
Embarked_S_survived = self.data[self.data[u'Embarked'] == 'S'][u'Survived'].value_counts()[1]
Embarked_S_death = self.data[self.data[u'Embarked'] == 'S'][u'Survived'].value_counts()[0]
Embarked_S_rate = float(Embarked_S_survived) / (float(Embarked_S_survived) + float(Embarked_S_death)) Embarked_C_survived = self.data[self.data[u'Embarked'] == 'C'][u'Survived'].value_counts()[1]
Embarked_C_death = self.data[self.data[u'Embarked'] == 'C'][u'Survived'].value_counts()[0]
Embarked_C_rate = float(Embarked_C_survived) / (float(Embarked_C_survived) + float(Embarked_C_death)) Embarked_Q_survived = self.data[self.data[u'Embarked'] == 'Q'][u'Survived'].value_counts()[1]
Embarked_Q_death = self.data[self.data[u'Embarked'] == 'Q'][u'Survived'].value_counts()[0]
Embarked_Q_rate = float(Embarked_Q_survived) / (float(Embarked_Q_survived) + float(Embarked_Q_death)) embarked = ['S港口', 'C港口', 'Q港口']
rate = [Embarked_S_rate, Embarked_C_rate, Embarked_Q_rate]
max_rate = max(rate)
return '{}存活率最大,为{}'.format(embarked[rate.index(max_rate)], max_rate) # 8.不同年龄段女性的获救率
def female_survive(self):
female18_survived = \
self.data[(self.data[u'Age'] <= 18) & (self.data[u'Sex'] == u'female')][u'Survived'].value_counts()[1]
female18_death = \
self.data[(self.data[u'Age'] <= 18) & (self.data[u'Sex'] == u'female')][u'Survived'].value_counts()[0]
female18_rate = float(female18_survived) / (float(female18_survived) + float(female18_death)) female1850_survived = \
self.data[(self.data[u'Age'] > 18) & (self.data[u'Age'] < 50) & (self.data[u'Sex'] == u'female')][
u'Survived'].value_counts()[1]
female1850_death = \
self.data[(self.data[u'Age'] > 18) & (self.data[u'Age'] < 50) & (self.data[u'Sex'] == u'female')][
u'Survived'].value_counts()[0]
female1850_rate = float(female1850_survived) / (float(female1850_survived) + float(female1850_death)) female50_survived = \
self.data[(self.data[u'Age'] >= 50) & (self.data[u'Sex'] == u'female')][u'Survived'].value_counts()[1]
female50_death = \
self.data[(self.data[u'Age'] >= 50) & (self.data[u'Sex'] == u'female')][u'Survived'].value_counts()[0]
female50_rate = float(female50_survived) / (float(female50_survived) + float(female50_death)) return '18岁以下女性存活率:{},18-50岁女性存活率:{},50岁以上女性存活率:{}'.format(female18_rate, female1850_rate, female50_rate) if __name__ == '__main__':
tt = Titanic()
# print tt.rate_survive()
# print tt.than_survive()
# print tt.max_survive()
# print tt.poor_wealth()
# print tt.pclass_survive()
# print tt.family_survive()
# print tt.emarked_survive()
print tt.female_survive()
DATA-->INFOMATION-->KNOWLEDGE-->WISDOM
数据-->信息-->知识-->智慧
爬虫-->数据库-->数据分析-->机器学习
- 信息:通过某种方式组织和处理数据,分析数据间的关系,数据就有了意义
- 知识:如果说数据是一个事实的集合,从中可以得出关于事实的结论。那么知识(Knowledge)就是信息的集合,它使信息变得有用。知识是对信息的应用,是一个对信息判断和确认的过程,这个过程结合了经验、上下文、诠释和反省。知识可以回答“如何?”的问题,可以帮助我们建模和仿真
- 智慧:智慧可以简单的归纳为做正确判断和决定的能力,包括对知识的最佳使用。智慧可以回答“为什么”的问题。回到前面的例子,根据故障对客户的业务影响可以识别改进点