[UOJ UNR#2 黎明前的巧克力]

时间:2023-03-08 20:42:22

来自FallDream的博客,未经允许,请勿转载,谢谢。


传送门

很奇妙的一道题

首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2,最后输出f[0]即可。

这样我就考虑从FWT之后的数组入手。

首先发现F[0]=1只会让最后的数组全部+1,所以只考虑F[ai]=2的影响。

发现每个项只会是3或者-1,这取决于FWT过程中的取反次数。

所以可以设计一个dp,f[i][x]表示分治到第i层,x是2的方案数,F[i][x]表示....,x是-2的方案数。

这样模拟FWT进行dp即可,最后通过快速幂计算出变换后最终的数组,再逆变换回去就是答案啦。

#include<iostream>
#include<cstring>
#include<cstdio>
#define MN 1048576
#define mod 998244353
using namespace std;
inline int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x;
}
const int Inv2=(mod+)/;
int s[MN+],S[MN+],n,f[][MN+],F[][MN+],num[MN+],sum; inline int pow(int x,int k)
{
for(sum=;k;k>>=,x=1LL*x*x%mod)
if(k&) sum=1LL*sum*x%mod;
return sum;
} void FWT(int l,int r)
{
if(l==r) return;
int mid=l+r>>;FWT(l,mid);FWT(mid+,r);
for(int i=;i<=mid-l;++i)
{
int x=s[l+i],y=s[mid++i];
s[l+i]=1LL*(x+y)*Inv2%mod;
s[mid++i]=1LL*(x-y+mod)*Inv2%mod;
}
} void Solve(int l,int r,int dep)
{
if(l==r){f[dep][l]=num[l];return;}
int mid=l+r>>;Solve(l,mid,dep+);Solve(mid+,r,dep+);
for(int i=;i<=mid-l;++i)
{
f[dep][l+i]=f[dep+][l+i]+f[dep+][mid++i];
F[dep][l+i]=F[dep+][l+i]+F[dep+][mid++i];
f[dep][mid++i]=f[dep+][l+i]+F[dep+][mid++i];
F[dep][mid++i]=F[dep+][l+i]+f[dep+][mid++i];
}
} int main()
{
n=read();
for(int i=;i<=n;++i) ++num[read()];
Solve(,MN-,);
for(int i=;i<MN;++i)
{
s[i]=pow(,f[][i]);
if(F[][i]&) s[i]=(mod-s[i])%mod;
}
FWT(,MN-);
printf("%d\n",(s[]-+mod)%mod);
return ;
}