Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively. Below is one possible representation of s1 = "great": great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children. For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat". rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great". Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae". rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great". Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
三维动态规划: f(i, j, n) = || ((f(i, j, m) && f(i + m, j + m, n - m)) || f(i, j + n - m, m) && f(i + m, j, n - m)) for 1 <= m < n
where f(i, j, n)
is true iff substring starts at s1[i] and substring starts at s2[j] both with length n are scrambled
class Solution {
public:
bool isScramble(string s1, string s2) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int n = s1.size();
if (s2.size() != n) return false;
if(s1 == s2 ) return true; bool f[n][n][n+]; for(int i= ; i< n; i++)
for(int j = ; j< n; j++)
{
f[i][j][] = true;//len 0 其实没用,只是为了k 的编程容易而已
f[i][j][] = s1[i] == s2[j] ;
} for(int len = ; len <= n; len ++)
for( int i = ; i + len - < n;i++)
for(int j = ; j + len - <n;j++)
{
f[i][j][len] = false;
for(int k = ; k< len ; k++){
if ( (f[i][j][k] && f[i+k][j+k][len-k]) ||
(f[i][j+len-k][k] && f[i+k][j][len-k]) )
{
f[i][j][len] = true;
break;
}
}
} return f[][][n];
}
};