题目链接:http://codeforces.com/contest/906/problem/D
题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个l,r,求w[l]^w[l+1]^w[l+2]……w[r] %m ,即a[l]到a[r]的幂次方
解题思路:利用欧拉降幂公式
第一个要求a和p互质,第2个和第3个为广义欧拉降幂,不要求a和p互质,用在这题刚好。
因为有两种情况,所以我们需要自定义一下降幂取模公式。
我们对整个区间进行递归处理,每一个数的指数是它后一个数到右端点的幂。
递归终止条件为到右端点或者p的欧拉函数值为1,再求欧拉函数值的时候我们需要进行记忆化,否则会超时
代码:
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
#define ll long long
#define MOD(a,b) a>=b?a%b+b:a
#define N 100005
map<ll,ll> mp;
int n,l,r,q;
ll mod,w[N];
ll qpow(ll a,ll b,ll p){
ll res=;
while(b){
if(b&) res=MOD(res*a,p); //为保证指数结果正确,应该用自定义取模
b>>=;
a=MOD(a*a,p);
}
return res;
}
ll phi(ll x){
if(mp[x]) return mp[x];
ll tmp=x,res=x;
for(int i=;i*i<=x;i++){
if(x%i==){
res=res*(i-)/i;
while(x%i==) x/=i;
}
}
if(x>) res=res*(x-)/x;
return mp[tmp]=res;
}
ll solve(int l,int r,ll m){
if(l==r||m==) return MOD(w[l],m);
else return qpow(w[l],solve(l+,r,phi(m)),m);
}
int main() {
scanf("%d%I64d",&n,&mod);
for(int i=;i<=n;i++) scanf("%I64d",&w[i]);
scanf("%d",&q);
while(q--){
scanf("%d%d",&l,&r);
printf("%I64d\n",solve(l,r,mod)%mod);
}
return ;
}
bzoj 3884 上帝与集合的正确用法
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3884
题目大意:和上题很像,只不过所有数都是2,且次方是无穷的了,给定一个正整数p,求2^(2^(2^(2^(2^...)))) mod p的值
解题思路:方法几乎是一样的,因为每次递归幂的模数就会变成原来的欧拉函数值,所以最多经过log(p),模数就会变成1,然后后面结果都一样的了,没必要递归下去,直接结束就好了。
代码:
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
#define ll long long
#define MOD(a,b) a>=b?a%b+b:a
#define N 100005
map<ll,ll> mp;
int n,l,r,q;
ll mod;
ll qpow(ll a,ll b,ll p){
ll res=;
while(b){
if(b&) res=MOD(res*a,p);
b>>=;
a=MOD(a*a,p);
}
return res;
}
ll phi(ll x){
if(mp[x]) return mp[x];
ll tmp=x,res=x;
for(int i=;i*i<=x;i++){
if(x%i==){
res=res*(i-)/i;
while(x%i==) x/=i;
}
}
if(x>) res=res*(x-)/x;
return mp[tmp]=res;
}
ll solve(ll m){
if(m==) return ;
else return qpow(,solve(phi(m)),m);
}
int main() {
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&mod);
printf("%lld\n",solve(mod)%mod);
}
return ;
}