concurrent.futures —Launching parallel tasks concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习的进程池Pool和threadpool模块也可以使用。
对进程池疑惑的可以参阅:32进程池与回调函数http://www.cnblogs.com/liluning/p/7445457.html
对threadpool模块疑惑的可以看我闲暇时写的一段代码:(因为本人也不了解这个模块,代码里写的也是自己想当然的,如有问题请自行查阅资料)
基于threadpool猫眼爬虫
一、concurrent.futures模块
1、官方文档
https://docs.python.org/dev/library/concurrent.futures.html#module-concurrent.futures
2、ProcessPoolExecutor(进程池)与ThreadPoolExecutor(线程池)
(进程池类与线程池类的方法使用等各方面基本相同)
1)导入
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
2)创建
p = ProcessPoolExecutor(num) #创建进程池
t = ThreadPoolExecutor(num) #创建线程池
3)参数
num:要创建的进程数或线程数,如果省略,进程数将默认使用cpu_count()的值,线程数将默认使用cpu_count()*5的值
4)主要方法
submit(fn, *args, **kwargs):在一个池工作进程中执行执行fn(args kwargs)执行,并返回一个表示可调用的执行的Future对象
map(func, *iterables, timeout=None, chunksize=1):
shutdown(wait=True):执行结束释放资源
3、应用
1)进程池

from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
l=[]
start=time.time()
for i in range(10):
obj=p.submit(task,i)
l.append(obj)
p.shutdown()
print('='*30)
print([obj for obj in l])
print([obj.result() for obj in l])
print(time.time()-start)

2)线程池

from concurrent.futures import ThreadPoolExecutor
import threading
import os,time
def task(n):
print('%s:%s is running' %(threading.currentThread().getName(),os.getpid()))
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ThreadPoolExecutor()
l=[]
start=time.time()
for i in range(10):
obj=p.submit(task,i)
l.append(obj)
p.shutdown()
print('='*30)
print([obj.result() for obj in l])
print(time.time()-start)

3)同步执行

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import os,time,random
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
start=time.time()
for i in range(10):
res=p.submit(task,i).result()
print(res)
print('='*30)
print(time.time()-start)

4、回调函数
不懂回调函数的看本章节首部有链接

from concurrent.futures import ThreadPoolExecutor
import requests, os, time
from threading import currentThread
def get_page(url):
print('%s:<%s> is getting [%s]' %(currentThread().getName(),os.getpid(),url))
response=requests.get(url)
time.sleep(2)
return {'url':url,'text':response.text}
def parse_page(res):
res=res.result() #注意值
print('%s:<%s> parse [%s]' %(currentThread().getName(),os.getpid(),res['url']))
with open('db.txt','a') as f:
parse_res='url:%s size:%s\n' %(res['url'],len(res['text']))
f.write(parse_res)
if __name__ == '__main__':
p=ThreadPoolExecutor()
urls = [
'https://www.baidu.com',
'http://www.openstack.org',
'https://www.python.org',
'http://www.sina.com.cn/'
] for url in urls:
p.submit(get_page, url).add_done_callback(parse_page)
#add_done_callback()回调函数
p.shutdown()
print('主',os.getpid())

5、map方法
map有疑惑可以阅览:19、内置函数和匿名函数http://www.cnblogs.com/liluning/p/7280832.html

from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
obj=p.map(task,range(10))
p.shutdown()
print('='*30)
print(list(obj))

二、协程概念
1、定义
是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
2、注意
1)python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会*交出cpu执行权限,切换其他线程运行)
2)单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
3、优点
1) 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2) 单线程内就可以实现并发的效果,最大限度地利用cpu
4、缺点
1) 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2) 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
5、总结
1)必须在只有一个单线程里实现并发
2)修改共享数据不需加锁
3)用户程序里自己保存多个控制流的上下文栈
附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
三、greenlet模块
如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换
生成器:18、迭代器和生成器http://www.cnblogs.com/liluning/p/7274862.html
1、安装
pip3 install greenlet
2、使用

from greenlet import greenlet def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

3、单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度
单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。
四、Gevent模块
1、安装
pip3 install gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
2、用法

g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值

3、遇到IO阻塞时会自动切换任务
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
4、Gevent的同步与异步
5、Gevent实现爬虫

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == 200:
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
g1=gevent.spawn(get_page, 'https://www.python.org/')
g2=gevent.spawn(get_page, 'https://www.yahoo.com/')
g3=gevent.spawn(get_page, 'https://github.com/')
gevent.joinall([g1,g2,g3])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))

6、gevent实现单线程下的socket并发
通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)
7、多协程发送多个客户端