给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数。
愚蠢的名字......
整体二分,影响因子就是矩阵里的数
把$\le mid$的矩阵元素加到二维树状数组里然后询问分成两组就行了
可以把矩阵元素权值排序后直接二分矩阵元素而不是值
复杂度$O(nlog^3n)$
用排序代替一维树状数组理论上更快,但需要把矩阵里的元素和查询放到一个数组里再排序貌似常数太大
然后发现黄学长的做法是错误的复杂度不对....但竟然比我快....
二维树状数组一定不要写错!!!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,M=6e4+,INF=1e9;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,Q;
struct Factor{
int x,y,v;
Factor(){}
Factor(int a,int b,int c):x(a),y(b),v(c){}
bool operator <(const Factor &r)const{return v<r.v;}
}a[N*N];
int m,now=; struct Query{
int x1,y1,x2,y2,k;
}q[M];
int id[M],t1[M],t2[M],cur[M]; int c[N][N];
inline int lowbit(int x){return x&-x;}
inline void add(int x,int y,int v){
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=n;j+=lowbit(j)) c[i][j]+=v;
}
inline int sum(int x,int y){
int re=;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j)) re+=c[i][j];
return re;
}
inline int que(int i){
int x1=q[i].x1-,y1=q[i].y1-,x2=q[i].x2,y2=q[i].y2;
return sum(x2,y2)-sum(x1,y2)-sum(x2,y1)+sum(x1,y1);
}
int ans[M];
void Sol(int l,int r,int ql,int qr){
if(ql>qr) return;
if(l==r){
for(int i=ql;i<=qr;i++) ans[id[i]]=a[l].v;
return;
}
int mid=(l+r)>>;
for(int i=l;i<=mid;i++) add(a[i].x,a[i].y,);
int p1=,p2=;
for(int i=ql;i<=qr;i++){
int u=id[i],s=cur[u]+que(u);
if(s>=q[u].k) t1[++p1]=u;
else t2[++p2]=u,cur[u]=s;
}
for(int i=l;i<=mid;i++) add(a[i].x,a[i].y,-);
for(int i=;i<=p1;i++) id[ql+i-]=t1[i];
for(int i=;i<=p2;i++) id[ql+p1+i-]=t2[i];
Sol(l,mid,ql,ql+p1-);
Sol(mid+,r,ql+p1,qr);
}
int main(){
freopen("in","r",stdin);
n=read();Q=read();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) a[++m]=Factor(i,j,read());
for(int i=;i<=Q;i++)
q[i].x1=read(),q[i].y1=read(),q[i].x2=read(),q[i].y2=read(),q[i].k=read();
sort(a+,a++m);
for(int i=;i<=Q;i++) id[i]=i;
Sol(,m,,Q);
for(int i=;i<=Q;i++) printf("%d\n",ans[i]);
}