AbstractExecutorService对ExecutorService的执行任务类型的方法提供了一个默认实现。这些方法包括submit,invokeAny和InvokeAll。
注意的是来自Executor接口的execute方法是未被实现,execute方法是整个体系的核心,所有的任务都是在这个方法里被真正执行的,因此该方法的不同实现会带来不同的执行策略。这个在后面分析ThreadPoolExecutor和ScheduledThreadPoolExecutor就能看出来。
首先来看submit方法,它的基本逻辑是这样的:
1. 生成一个任务类型和Future接口的包装接口RunnableFuture的对象
2. 执行任务
3. 返回future。
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
} public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
因为submit支持Callable和Runnable两种类型的任务,因此newTaskFor方法有两个重载方法:
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
} protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
上一篇文章里曾经说过Callable和Runnable的区别在于前者带返回值,也就是说Callable=Runnable+返回值。因此java中提供了一种adapter,把Runnable+返回值转换成Callable类型。这点可以在newTaskFor中的FutureTask类型的构造函数的代码中看到:
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
sync = new Sync(callable);
} public FutureTask(Runnable runnable, V result) {
sync = new Sync(Executors.callable(runnable, result));
}
以下是Executors.callable方法的代码:
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
那么RunnableAdapter的代码就很好理解了,它是一个Callable的实现,call方法的实现就是执行Runnable的run方法,然后返回那个value。
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
接下来先说说较为简单的invokeAll:
1. 为每个task调用newTaskFor方法生成得到一个既是Task也是Future的包装类对象的List
2. 循环调用execute执行每个任务
3. 再次循环调用每个Future的get方法等待每个task执行完成
4. 最后返回Future的list。
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException {
if (tasks == null || unit == null)
throw new NullPointerException();
long nanos = unit.toNanos(timeout);
List<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
boolean done = false;
try {
// 为每个task生成包装对象
for (Callable<T> t : tasks)
futures.add(newTaskFor(t)); long lastTime = System.nanoTime(); // 循环调用execute执行每个方法
// 这里因为设置了超时时间,所以每次执行完成后
// 检查是否超时,超时了就直接返回future集合
Iterator<Future<T>> it = futures.iterator();
while (it.hasNext()) {
execute((Runnable)(it.next()));
long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
if (nanos <= 0)
return futures;
} // 等待每个任务执行完成
for (Future<T> f : futures) {
if (!f.isDone()) {
if (nanos <= 0)
return futures;
try {
f.get(nanos, TimeUnit.NANOSECONDS);
} catch (CancellationException ignore) {
} catch (ExecutionException ignore) {
} catch (TimeoutException toe) {
return futures;
}
long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
}
}
done = true;
return futures;
} finally {
if (!done)
for (Future<T> f : futures)
f.cancel(true);
}
}
最后说说invokeAny,它的难点在于只要一个任务执行成功就要返回,并且会取消其他任务,也就是说重点在于找到第一个执行成功的任务。
这里我想到了BlockingQueue,当所有的任务被提交后,任务执行返回的Future会被依次添加到一个BlockingQueue中,然后找到第一个执行成功任务的方法就是从BlockingQueue取出第一个元素,这个就是doInvokeAny方法用到的ExecutorCompletionService的基本原理。
因为两个invokeAny方法都是调用doInvokeAny方法,下面是doInvokeAny的代码分析:
private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks,
boolean timed, long nanos)
throws InterruptedException, ExecutionException, TimeoutException {
if (tasks == null)
throw new NullPointerException();
int ntasks = tasks.size();
if (ntasks == 0)
throw new IllegalArgumentException();
List<Future<T>> futures= new ArrayList<Future<T>>(ntasks);
// ExecutorCompletionService负责执行任务,后面调用用poll返回第一个执行结果
ExecutorCompletionService<T> ecs =
new ExecutorCompletionService<T>(this); // 这里出于效率的考虑,每次提交一个任务之后,就检查一下有没有执行完成的任务 try {
ExecutionException ee = null;
long lastTime = timed ? System.nanoTime() : 0;
Iterator<? extends Callable<T>> it = tasks.iterator(); // 先提交一个任务
futures.add(ecs.submit(it.next()));
--ntasks;
int active = 1; for (;;) {
// 尝试获取有没有执行结果(这个结果是立刻返回的)
Future<T> f = ecs.poll();
// 没有执行结果
if (f == null) {
// 如果还有任务没有被提交执行的,就再提交一个任务
if (ntasks > 0) {
--ntasks;
futures.add(ecs.submit(it.next()));
++active;
}
// 没有任务在执行了,而且没有拿到一个成功的结果。
else if (active == 0)
break;
// 如果设置了超时情况
else if (timed) {
// 等待执行结果直到有结果或者超时
f = ecs.poll(nanos, TimeUnit.NANOSECONDS);
if (f == null)
throw new TimeoutException();
// 这里的更新不可少,因为这个Future可能是执行失败的情况,那么还需要再次等待下一个结果,超时的设置还是需要用到。
long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
}
// 没有设置超时,并且所有任务都被提交了,则一直等到第一个执行结果出来
else
f = ecs.take();
}
// 有返回结果了,尝试从future中获取结果,如果失败了,那么需要接着等待下一个执行结果
if (f != null) {
--active;
try {
return f.get();
} catch (ExecutionException eex) {
ee = eex;
} catch (RuntimeException rex) {
ee = new ExecutionException(rex);
}
}
} // ExecutorCompletionService执行时发生错误返回了全是null的future
if (ee == null)
ee = new ExecutionException();
throw ee; } finally {
// 尝试取消所有的任务(对于已经完成的任务没有影响)
for (Future<T> f : futures)
f.cancel(true);
}
}
后面接着分析ThreadPoolExecutor和ScheduledThreadPoolExecutor。