Original
#include <stdlib.h>
#include <time.h>
srand(time(NULL));
rand();
The versions of rand() and srand() in the Linux C Library use the same random number generator as random(3) and srandom(3), so the lower-order bits should be as random as the higher-order bits. However, on older rand() implementations, and on current implementations on different systems, the lower-order bits are much less random than the higher-order bits. Do not use this function in applications intended to be portable when good randomness is needed. (Use random(3) instead.)
Better
#include <stdlib.h>
#include <time.h>
srandom(time(NULL));
random();
The random() function uses a nonlinear additive feedback random number generator employing a default table of size 31 long integers to return successive pseudo-random numbers in the range from 0 to RAND_MAX. The period of this random number generator is very large, approximately 16 * ((2^31) - 1). The srandom() function sets its argument as the seed for a new sequence of pseudo-random integers to be returned by random(). These sequences are repeatable by calling srandom() with the same seed value. If no seed value is provided, the random() function is automatically seeded with a value of 1. The initstate() function allows a state array state to be initialized for use by random(). The size of the state array n is used by initstate() to decide how sophisticated a random number generator it should use—the larger the state array, the better the random numbers will be. seed is the seed for the initialization, which specifies a starting point for the random number sequence, and provides for restarting at the same point. The setstate() function changes the state array used by the random() function. The state array state is used for random number generation until the next call to initstate() or setstate(). state must first have been initialized using initstate() or be the result of a previous call of setstate().
To make the seed different every time we use it, we'd better use time(NULL) as the seed.
For more details:
man 3 rand
man random
2016-04-01
Append:
You can read random numbers from /dev/random or /dev/urandom.
The former may block your process.
So if you are not too sensitive with security, use /dev/urandom.