DPDK内存管理-----(四)rte_mbuf

时间:2022-10-14 22:28:24

本文主要介绍rte_mbuf与rte_mempool数据结构之间的组织关系、以及网卡接收到的数据是如何存储在rte_mbuf中的。

 

一、rte_mbuf、rte_mempool及网卡收到的数据包在内存中的组织结构

      DPDK内存管理-----(四)rte_mbuf

调用rte_mempool_create()函数创建rte_mempool的时候,指定申请多少个rte_mbuff及每个rte_mbuf中elt_size的大小。elt_size是为网卡接收的数据包预先分配的内存的大小,该内存块就是rte_mbuf->pkt.data的实际存储区域。具体如上图所示。

在申请的rte_mempool内存块中,最前面存储struct rte_mempool数据结构,后面紧接着是rte_pktmbuf_pool_private数据,再后面就是N个rte_mbuf内存块。

每个rte_mbuf内存中,最前面同样存储的是struct rte_mbuf数据结果,后面是RTE_PKTMBUF_HEADROOM,最后面就是实际网卡接收到的数据,如下:

   struct rte_mbuf *m = _m;
uint32_t buf_len
= mp->elt_size - sizeof(struct rte_mbuf);

RTE_MBUF_ASSERT(mp
->elt_size >= sizeof(struct rte_mbuf));

memset(m,
0, mp->elt_size);

/* start of buffer is just after mbuf structure */
m
->buf_addr = (char *)m + sizeof(struct rte_mbuf);
m
->buf_physaddr = rte_mempool_virt2phy(mp, m) +
sizeof(struct rte_mbuf);
m
->buf_len = (uint16_t)buf_len;

/* keep some headroom between start of buffer and data */
m
->pkt.data = (char*) m->buf_addr + RTE_MIN(RTE_PKTMBUF_HEADROOM, m->buf_len);

/* init some constant fields */
m
->type = RTE_MBUF_PKT;
m
->pool = mp;
m
->pkt.nb_segs = 1;
m
->pkt.in_port = 0xff;

 

二、网卡接收的数据是如何存储到rte_mbuf中的?

以e1000网卡为例,在网卡初始化的时候,调用eth_igb_rx_init()初始化网卡的收包队列。每个收包队列数据结果如下:

/**
* Structure associated with each RX queue.
*/
struct igb_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
uint64_t rx_ring_phys_addr;
/**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc;
/**< number of RX descriptors. */
uint16_t rx_tail;
/**< current value of RDT register. */
uint16_t nb_rx_hold;
/**< number of held free RX desc. */
uint16_t rx_free_thresh;
/**< max free RX desc to hold. */
uint16_t queue_id;
/**< RX queue index. */
uint16_t reg_idx;
/**< RX queue register index. */
uint8_t port_id;
/**< Device port identifier. */
uint8_t pthresh;
/**< Prefetch threshold register. */
uint8_t hthresh;
/**< Host threshold register. */
uint8_t wthresh;
/**< Write-back threshold register. */
uint8_t crc_len;
/**< 0 if CRC stripped, 4 otherwise. */
uint8_t drop_en;
/**< If not 0, set SRRCTL.Drop_En. */
};

我们只关注其中两个成员变量,rx_ring和sw_ring。rx_ring记录的是union e1000_adv_rx_desc数组,每个union e1000_adv_rx_desc中指定了网卡接收数据的DMA地址,网卡收到数据后,直接往该地址写数据。sw_ring数组记录的是每个具体的rte_mbuf地址,每个rte_mbuf的rte_mbuff->buf_phyaddr + RTE_PKTMBUF_HEADROOM映射后的DMA地址就存储在rx_ring队列的union e1000_adv_rx_desc数据结构中。rte_mbuff->buf_phyaddr + RTE_PKTMBUF_HEADROOM指向的就是rte_mbuf->pkt.data的地址。此时,rte_mbuf、rte_mbuf->pkt.data,已经网卡的收包队列就关联起来了。具体如下:

static int
igb_alloc_rx_queue_mbufs(
struct igb_rx_queue *rxq)
{
struct igb_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned i;

/* Initialize software ring entries. */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union e1000_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);

if (mbuf == NULL) {
PMD_INIT_LOG(ERR,
"RX mbuf alloc failed "
"queue_id=%hu\n", rxq->queue_id);
return (-ENOMEM);
}
dma_addr
=
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
rxd
= &rxq->rx_ring[i];
rxd
->read.hdr_addr = dma_addr;
rxd
->read.pkt_addr = dma_addr;
rxe[i].mbuf
= mbuf;
}

return 0;
}

网卡收到数据后,向rx_ring指定的DMA地址上写数据,其实,就是往每个rte_mbuf->pkt.data写数据。应用程序在调用rte_eth_rx_burst()收包时,以e1000网卡为例,最后调用的是eth_igb_recv_pkts(),就是从每个收包队列中,从sw_ring数组中将rte_mbuf取出来,然后重启申请新的rte_mbuf替换到rx_ring中,重新关联rte_mbuf、union e1000_adv_rx_desc、sw_ring以及rte_mbuf->pkt.data的DMA地址。如下简图所示。

    DPDK内存管理-----(四)rte_mbuf

 

错误之处,欢迎指出。

转载请标明转自http://www.cnblogs.com/MerlinJ/p/4284706.html