{转}用ADMM求解大型机器学习问题

时间:2022-02-01 19:53:13

从等式约束的最小化问题说起:                                                                                        {转}用ADMM求解大型机器学习问题  上面问题的拉格朗日表达式为:                                              {转}用ADMM求解大型机器学习问题  也就是前面的最小化问题可以写为:                                               minxmaxyL(x,y) 。 它对应的对偶问题为:                                              maxyminxL(x,y) 。 下面是用来求解此对偶问题的对偶上升迭代方法:                                    {转}用ADMM求解大型机器学习问题  这个方法在满足一些比较强的假设下可以证明收敛。

为了弱化对偶上升方法的强假设性,一些研究者在上世纪60年代提出使用扩展拉格朗日表达式(augmented Lagrangian)代替原来的拉格朗日表达式:                                  {转}用ADMM求解大型机器学习问题  其中ρ>0。对应上面的对偶上升方法,得到下面的乘子法(method of multipliers):                                                     {转}用ADMM求解大型机器学习问题

注意,乘子法里把第二个式子里的αk改成了扩展拉格朗日表达式中引入的ρ。这不是一个随意行为,而是有理论依据的。利用L(x,y)可以导出上面最小化问题对应的原始和对偶可行性条件分别为(∂L∂y=0,∂L∂x=0):                                               {转}用ADMM求解大型机器学习问题  既然xk+1 最小化 Lρ(x,yk),有:                                       {转}用ADMM求解大型机器学习问题   上面最后一个等式就是利用了yk+1=yk+ρ(Axk+1−b)。从上面可知,这种yk+1的取法使得(xk+1,yk+1)满足对偶可行条件∂L∂x=0。而原始可行条件在迭代过程中逐渐成立。

乘子法弱化了对偶上升法的收敛条件,但由于在x-minimization步引入了二次项而导致无法把x分开进行求解(详见[1])。而接下来要讲的最小化Lρ(xk+1,z,yk):                                     {转}用ADMM求解大型机器学习问题    其中用到了z对应的对偶可行性式子:                                                    ∂L∂z=∇g(z)+BTy=0

定义新变量u=1ρy,那么(3.2-3.4)中的迭代可以变为以下形式:                           {转}用ADMM求解大型机器学习问题  在真正求解时通常会使用所谓的over-relaxation方法,也即在z和u中使用下面的表达式代替其中的Axk+1:                                          αkAxk+1−(1−αk)(Bzk−c), 其中αk为relaxation因子。有实验表明αk∈[1.5,1.8]可以改进收敛性([2])。

下面让我们看看ADMM怎么被用来求解大型的机器学习模型。所谓的大型,要不就是样本数太多,或者样本的维数太高。下面我们只考虑第一种情况,关于第二种情况感兴趣的读者可以参见最后的参考文献[1, 2]。样本数太多无法一次全部导入内存,常见的处理方式是使用分布式系统,把样本分块,使得每块样本能导入到一台机器的内存中。当然,我们要的是一个最终模型,它的训练过程利用了所有的样本数据。常见的机器学习模型如下:                                     minimize x∑Jj=1fj(x)+g(x), 其中x为模型参数,fj(x)对应第j个样本的损失函数,而g(x)为惩罚系数,如g(x)=||x||1。

假设把J个样本分成N份,每份可以导入内存。此时我们把上面的问题重写为下面的形式:                                             {转}用ADMM求解大型机器学习问题  除了把目标函数分成N块,还额外加了N个等式约束,使得利用每块样本计算出来的模型参数xi都相等。那么,ADMM中的求解步骤(3.2)-(3.4)变为:                              {转}用ADMM求解大型机器学习问题  例如求解L1惩罚的LR模型,其迭代步骤如下(u=1ρy,g(z)=λ||z||1):                                     {转}用ADMM求解大型机器学习问题  其中x¯≐1N∑Nixi,y¯的定义类似。

在分布式情况下,为了计算方便通常会把u的更新步骤挪在最前面,这样u和x的更新可以放在一块:                                       {转}用ADMM求解大型机器学习问题

ADMM的框架确实很牛逼,把一个大问题分成可分布式同时求解的多个小问题。理论上,ADMM的框架可以解决大部分实际中的大尺度问题。我自己全部实现了一遍这个框架,主要用于求解LR问题,下面说说我碰到的一些问题: 1. 收敛不够快,往往需要迭代几十步。整体速度主要依赖于xi更新时所使用的优化方法,个人建议使用liblinear里算法,但是不能直接拿来就用,需要做一些调整。 2. 停止准则和ρ的选取:停止准则主要考量的是xi和z之间的差异和它们本身的变动情况,但这些值又受ρ的取值的影响。它们之间如何权衡并无定法。个人建议使用模型在测试集上的效果来确定是否停止迭代。 3. 不适合MapReduce框架实现:需要保证对数据的分割自始至终都一致;用MPI实现的话相对于其他算法又未必有什么优势(如L-BFGS、OwLQN等)。 4. relaxation步骤要谨慎:α的取值依赖于具体的问题,很多时候的确可以加快收敛速度,但对有些问题甚至可能带来不收敛的后果。用的时候不论是用x -> z -> u的更新步骤,还是用u -> x -> z的更新步骤,在u步使用的x_hat要和在z步使用的相同(使用旧的z),而不是使用z步刚更新的z重算。 5. warm start 和子问题求解逐渐精确的策略可以降低xi更新时的耗时,但也使得算法更加复杂,需要设定的参数也增加了。

[References] [1] S. Boyd. Alternating Direction Method of Multipliers (Slides).
[2] S. Boyd et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, 2010