用Python写了个简单的监控进程的脚本monitor190620.py,记录进程的CPU利用率和内存利用率到文件pid.csv中,分析进程运行数据用图表展示。
脚本的工作原理是这样的:脚本读取配置文件config.ini,读取预先配置好的进程的PID,之所以要用配置文件,是为了方便给需要的朋友,你只需要修改PID就可以了,源代码就不需要修改了。具体的看代码中的注释吧。下面的是配置文件 config.ini
[MonitorProcessID] ProcessID: 7544
上面可以根据你的需求配置不同的进程ID,我是需要监控 JMeter这个程序,通过 jps -l 查看该进程的PID,填写配置文件内容。
下面来看看monitor190620.py的代码(该代码在CentOS下运行时需要改正一行代码:from ConfigParser import ConfigParser):
# -*- encoding: utf-8 -*- import psutil import csv import time from configparser import ConfigParser CONFIGFILE = 'config.ini' config = ConfigParser() config.read(CONFIGFILE) ProcessID = config.get('MonitorProcessID', 'ProcessID') # 读取配置文件中的进程ID,这个参数可以在配置文件中修改 proc = psutil.Process(int(ProcessID)) #print(ProcessID,"% .2f% %"%(proc.memory_percent()),"% .2f% %"%(proc.cpu_percent()),proc.name(),proc.exe()) f = open('pid.csv', 'w') f.truncate() f_csv = csv.writer(f) flag = 1 while flag < 10: row = [] row = [ProcessID,'%.2f'%(proc.memory_percent()),'%.2f'%(proc.cpu_percent()),time.strftime("%H:%M:%S", time.localtime()),proc.name(),proc.exe()] f_csv.writerow(row) flag += 1 time.sleep(4) f.close()
执行后,生成的 pid.csv 的文件内容为:
7544,3.12,0.00,15:39:12,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:16,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:20,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:24,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:28,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:32,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:36,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:40,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe 7544,3.12,0.00,15:39:44,java.exe,C:\Program Files (x86)\Common Files\Oracle\Java\javapath_target_119167744\java.exe
编写 show190620.py ,读取 pid.csv 的文件内容,做统计分析,并将分析结果可视化为图表:
import csv import pandas as pd import matplotlib.pyplot as plt time = [] cpu = [] mem = [] with open('pid.csv')as f: f_csv = csv.reader(f) for row in f_csv: if len(row): #判断是不是空行,csv中隔一行记录运行的信息 time.append(row[3]) cpu.append(float(row[2])) mem.append(float(row[1])) else: continue print(time) print(cpu) print(mem) s_cpu = pd.Series(cpu) s_mem = pd.Series(mem) cpu_mean = s_cpu.mean() mem_mean = s_mem.mean() print('cpu利用率平均值是:%f' % cpu_mean) print('内存利用率平均值是:%f' % mem_mean) plt.plot(time,cpu, c='r') plt.plot(time,mem, c='b') plt.show()
返回信息:
['15:39:12', '15:39:16', '15:39:20', '15:39:24', '15:39:28', '15:39:32', '15:39:36', '15:39:40', '15:39:44'] [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] [3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12] cpu利用率平均值是:0.000000 内存利用率平均值是:3.120000
并显示图表:
参考:
https://www.cnblogs.com/yueminghai/p/6632871.html
https://www.cnblogs.com/xiaobeibei26/p/6481707.html
https://www.cnblogs.com/ratels/p/11023109.html
https://www.cnblogs.com/sen-c7/p/9473224.html
https://blog.****.net/cz505632696/article/details/80025816
https://blog.****.net/katyusha1/article/details/81606175
https://www.runoob.com/python/python-lists.html
https://www.cnblogs.com/AiyaFocus/p/AiyaFocus.html
https://www.cnblogs.com/haiyan123/p/9104143.html