最短路算法详解(Dijkstra/SPFA/Floyd)

时间:2022-12-09 18:31:08

新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952

一、Dijkstra

Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路。所以Dijkstra常常作为其他算法的预处理。

使用邻接矩阵的时间复杂度为O(n^2),用优先队列的复杂度为O((m+n)logn)近似为O(mlogn)

(一)  过程

每次选择一个未访问过的到已经访问过(标记为Known)的所有点的集合的最短边,并用这个点进行更新,过程如下:

Dv为最短路,而Pv为前面的顶点。

最短路算法详解(Dijkstra/SPFA/Floyd)

1.     初始

V

Known

Dv

Pv

V1

F

0

0

V2

F

0

V3

F

0

V4

F

0

V5

F

0

V6

F

0

V7

F

0

2.     在v1被标记为已知后的表

V

Known

Dv

Pv

V1

T

0

0

V2

F

2

V1

V3

F

0

V4

F

1

V1

V5

F

0

V6

F

0

V7

F

0

3.     下一步选取v4并且标记为known,顶点v3,v5,v6,v7是邻接的顶点,而他们实际上都需要调整。如表所示:

V

Known

Dv

Pv

V1

T

0

0

V2

F

2

V1

V3

F

3

V4

V4

T

1

V1

V5

F

3

V4

V6

F

9

V4

V7

F

5

V4

4.     接下来选取v2,v4是邻接点,但已经是known的,不需要调整,v5是邻接的点但不做调整,因为经过v2的值为2+10=12而长为3的路径已经是已知的。

V

Known

Dv

Pv

V1

T

0

0

V2

T

2

V1

V3

F

3

V4

V4

T

1

V1

V5

F

3

V4

V6

F

9

V4

V7

F

5

V4

5.     接下来选取v5,值为3,v7 3+6>5不需调整,然后选取v3,对v6的距离下调到3+5=8

V

Known

Dv

Pv

V1

T

0

0

V2

T

2

V1

V3

T

3

V4

V4

T

1

V1

V5

T

3

V4

V6

F

8

V3

V7

F

5

V4

6.     再选下一个顶点是v7,v6变为5+1=6

V

Known

Dv

Pv

V1

T

0

0

V2

T

2

V1

V3

T

3

V4

V4

T

1

V1

V5

T

3

V4

V6

F

6

V7

V7

T

5

V4

7.     最后选取v6

V

Known

Dv

Pv

V1

T

0

0

V2

T

2

V1

V3

T

3

V4

V4

T

1

V1

V5

T

3

V4

V6

T

6

V7

V7

T

5

V4

(二)  局限性

Dijkstra没办法解决负边权的最短路径,如图

最短路算法详解(Dijkstra/SPFA/Floyd)

运行完该算法后,从顶点1到顶点3的最短路径为1,3,其长度为1,而实际上最短路径为1,2,3,其长度为0.(因为过程中先选择v3,v3被标记为已知,今后不再更新)

(三) 算法实现。

1.普通的邻接表 以(HDU 1874 畅通工程续 SPFA || dijkstra)为例

用vis作为上面标记的known,dis记录最短距离(记得初始化为一个很大的数)。

void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
int cur=s;
dis[cur]=0;
vis[cur]=1;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
if(!vis[j] && dis[cur] + map[cur][j] < dis[j]) //未被标记且比已知的短,可更新
dis[j]=dis[cur] + map[cur][j] ; int mini=INF;
for(int j=0;j<n;j++)
if(!vis[j] && dis[j] < mini) //选择下一次到已知顶点最短的点。
mini=dis[cur=j];
vis[cur]=true;
}
}

2.邻接表+优先队列。

要重载个比较函数.

struct point
{
int val,id;
point(int id,int val):id(id),val(val){}
bool operator <(const point &x)const{
return val>x.val;
}
};
void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
dis[i]=INF; priority_queue<point> q;
q.push(point(s,0));
dis[s]=0;
while(!q.empty())
{
int cur=q.top().id;
q.pop();
if(vis[cur]) continue;
vis[cur]=true;
for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(!vis[id] && dis[cur]+e[i].val < dis[id])
{
dis[id]=dis[cur]+e[i].val;
q.push(point(id,dis[id]));
}
}
}
}

二、SPFA(bellman-ford)

SPFA是bellman-ford的改进算法(队列实现),效率也更高,故直接介绍SPFA。
相比于Dijkstra,SPFA可以计算带负环的回路。
邻接表的复杂度为:O(kE)E为边数,k一般为2或3

(一)原理过程:


bellman-ford算法的基本思想是,对图中除了源顶点s外的任意顶点u,依次构造从s到u的最短路径长度序列dist[u],dis2[u]……dis(n-1)[u],其中n是图G的顶点数,dis1[u]是从s到u的只经过1条边的最短路径长度,dis2[u]是从s到u的最多经过G中2条边的最短路径长度……当图G中没有从源可达的负权图时,从s到u的最短路径上最多有n-1条边。因此,
dist(n-1)[u]就是从s到u的最短路径长度,显然,若从源s到u的边长为e(s,u),则dis1[u]=e(s,u).对于k>1,dis(k)[u]满足如下递归式,dis(k)[u]=min{dis(k-1)[v]+e(v,u)}.bellman-ford最短路径就是按照这个递归式计算最短路的。
SPFA的实现如下:用数组dis记录更新后的状态,cnt记录更新的次数,队列q记录更新过的顶点,算法依次从q中取出待更新的顶点v,按照dis(k)[u]的递归式计算。在计算过程中,一旦发现顶点K有cnt[k]>n,说明有一个从顶点K出发的负权圈,此时没有最短路,应终止算法。否则,队列为空的时候,算法得到G的各顶点的最短路径长度。

(二)实现:

void SPFA(int s)
{
for(int i=0;i<n;i++)
dis[i]=INF; bool vis[MAXN]={0}; vis[s]=true;
dis[s]=0; queue<int> q;
q.push(s);
while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false;
for(int i=0;i<n;i++)
{
if(dis[cur] + map[cur][i] < dis[i])
{
dis[i]=dis[cur] + map[cur][i];
if(!vis[i])
{
q.push(i);
vis[i]=true;
}
}
}
}
}

void spfa(int s)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
dis[i]=INF; queue<int> q;
q.push(s);
vis[s]=true;
dis[s]=0;
while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false;
for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(dis[id] > dis[cur]+e[i].val)
{
dis[id] = dis[cur] + e[i].val;
if(!vis[id])
{
vis[id]=true;
q.push(id);
}
}
}
}
}

3.上面的两个都没有对负圈的判断,因为题目的限制就是正的。判断负环代码如下:以(ZOJ 2770 Burn the Linked Camp 差分约束)为例

bool spfa()
{
for(int i=0;i<=n;i++)
dis[i]=INF; bool vis[MAXN]={0};
int cnt[MAXN]={0};
queue<int> q;
dis[0]=0;
vis[0]=true;
cnt[0]=1;
q.push(0); while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false; for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(dis[cur] + e[i].val > dis[id])
{
dis[id]=dis[cur]+e[i].val;
if(!vis[id])
{
cnt[id]++;
if(cnt[cur] > n)
return false;
vis[id]=true;
q.push(id);
}
}
}
}
return true;
}

(三):优化

SLF(Small Label First)是指在入队时如果当前点的dist值小于队首, 则插入到队首, 否则插入到队尾。
LLL不太常用,我也没研究。

(四)应用:

眼见的同学应该发现了,上面的差分约束四个字,是的SPFA可以很好的实现差分约束系统。

三、floyd

全称Floyd-Warshall。记得离散数学里面有Warshall算法,用来计算传递闭包。而数据结构每次都简称floyd,当时就觉得两个都差不多,有神马关系,后来google一下发现是同一个算法。。。。改个名字出来走江湖啊!!!!!
这个算法用于求所有点对的最短距离。比调用n次dijkstra的优点在于代码简单。
时间复杂度为O(n^3)

(一)原理过程:

这是一个dp(动态规划的过程)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
即从顶点i到j且经过顶点k的最短路径长度。

(二)实现:

void floyd()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}



四、其他

如走迷宫经常用的BFS,以一个点出发,向外扩散。

如:

UVA 10047 - TheMonocycle BFS

HDU 1728逃离迷宫 BFS

POJ3984迷宫问题 BFS

UVA 11624 - Fire!图BFS

除了上面的

HDU 1874畅通工程续 SPFA || dijkstra||floyd

还有:

UVA11280 - Flying to Fredericton SPFA变形

UVA11090 - Going in Cycle!! SPFA

UVA10917 Walk Through the Forest SPFA

POJ 3259Wormholes邻接表的SPFA判断负权回路

POJ 1932XYZZY (ZOJ 1935)SPFA+floyd

UVA11374 Airport Express SPFA||dijkstra

UVA11367 - Full Tank? dijkstra+DP

POJ 1511Invitation Cards (ZOJ 2008)使用优先队列的dijkstra

POJ 3268Silver Cow Party (Dijkstra~)

POJ 2387Til the Cows Come Home (Dijkstra)

UVA10603 - Fill BFS~