Linux内核源代码情景分析-fork()

时间:2022-10-11 16:37:58

    父进程fork出子进程:

    child = fork()

    fork经过系统调用,来到了sys_fork,详细过程请参考Linux内核源代码情景分析-系统调用

asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork(SIGCHLD, regs.esp, &regs, 0);
}
int do_fork(unsigned long clone_flags, unsigned long stack_start, //stack_start为用户空间堆栈指针    struct pt_regs *regs, unsigned long stack_size){int retval = -ENOMEM;struct task_struct *p;DECLARE_MUTEX_LOCKED(sem);if (clone_flags & CLONE_PID) {/* This is only allowed from the boot up thread */if (current->pid)return -EPERM;}current->vfork_sem = &sem;//如果clone_flags中CLONE_VFORK位置1,这个信号量用于up(&sem),使父进程唤醒p = alloc_task_struct();//为子进程分配两个连续的物理页面,低端用作子进程的task_struct结构,高端则用作其系统空间堆栈if (!p)goto fork_out;*p = *current;//父进程的整个task_struct就被复制到了子进程的数据结构retval = -EAGAIN;if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur)goto bad_fork_free;atomic_inc(&p->user->__count);atomic_inc(&p->user->processes);/* * Counter increases are protected by * the kernel lock so nr_threads can't * increase under us (but it may decrease). */if (nr_threads >= max_threads)goto bad_fork_cleanup_count;get_exec_domain(p->exec_domain);if (p->binfmt && p->binfmt->module)__MOD_INC_USE_COUNT(p->binfmt->module);p->did_exec = 0;p->swappable = 0;p->state = TASK_UNINTERRUPTIBLE;//不可中断等待状态copy_flags(clone_flags, p);//将参数clone_flags中的标志位略加补充和变换,然后写入p->flagsp->pid = get_pid(clone_flags);//获取进程pidp->run_list.next = NULL;p->run_list.prev = NULL;if ((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT)) {p->p_opptr = current;if (!(p->ptrace & PT_PTRACED))p->p_pptr = current;}p->p_cptr = NULL;init_waitqueue_head(&p->wait_chldexit);p->vfork_sem = NULL;spin_lock_init(&p->alloc_lock);p->sigpending = 0;init_sigpending(&p->pending);p->it_real_value = p->it_virt_value = p->it_prof_value = 0;p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;init_timer(&p->real_timer);p->real_timer.data = (unsigned long) p;p->leader = 0;/* session leadership doesn't inherit */p->tty_old_pgrp = 0;p->times.tms_utime = p->times.tms_stime = 0;p->times.tms_cutime = p->times.tms_cstime = 0;#ifdef CONFIG_SMP{int i;p->has_cpu = 0;p->processor = current->processor;/* ?? should we just memset this ?? */for(i = 0; i < smp_num_cpus; i++)p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0;spin_lock_init(&p->sigmask_lock);}#endifp->lock_depth = -1;/* -1 = no lock */p->start_time = jiffies;retval = -ENOMEM;/* copy all the process information */if (copy_files(clone_flags, p))//有条件地复制已打开文件的控制结构files_struct,这种复制只有在clone_flags中CLONE_FILES标志位为0时才真正进行,否则就只是共享父进程的指针goto bad_fork_cleanup;if (copy_fs(clone_flags, p))//有条件地复制文件系统相关结构files_structfs_struct,这种复制只有在clone_flags中CLONE_FS标志位为0时才真正进行,否则就只是共享父进程的指针goto bad_fork_cleanup_files;if (copy_sighand(clone_flags, p))//有条件地复制信号处理相关结构signal_struct,这种复制只有在clone_flags中CLONE_SIGHAND标志位为0时才真正进行,否则就只是共享父进程的指针goto bad_fork_cleanup_fs;if (copy_mm(clone_flags, p))//有条件地复制内存管理相关结构mm_struct及其下属的vm_area_struct,这种复制只有在clone_flags中CLONE_VM标志位为0时才真正进行,否则就只是共享父进程的指针goto bad_fork_cleanup_sighand;retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);//实际上却只是复制父进程的系统空间堆栈if (retval)goto bad_fork_cleanup_sighand;p->semundo = NULL;/* Our parent execution domain becomes current domain   These must match for thread signalling to apply */   p->parent_exec_id = p->self_exec_id;/* ok, now we should be set up.. */p->swappable = 1;p->exit_signal = clone_flags & CSIGNAL;//本进程执行exit()时应向父进程发出的信号,CSIGNALp->pdeath_signal = 0;/* * "share" dynamic priority between parent and child, thus the * total amount of dynamic priorities in the system doesnt change, * more scheduling fairness. This is only important in the first * timeslice, on the long run the scheduling behaviour is unchanged. */p->counter = (current->counter + 1) >> 1;current->counter >>= 1;//task_struct结构中counter字段的值就是进程的运行时间配额,这里将父进程的时间配额分成两半,让父、子进程各有原值的一半。if (!current->counter)current->need_resched = 1;/* * Ok, add it to the run-queues and make it * visible to the rest of the system. * * Let it rip! */retval = p->pid;p->tgid = retval;INIT_LIST_HEAD(&p->thread_group);write_lock_irq(&tasklist_lock);if (clone_flags & CLONE_THREAD) {p->tgid = current->tgid;list_add(&p->thread_group, ¤t->thread_group);}SET_LINKS(p);//将子进程的task_struct结构链入内核的进程队列hash_pid(p);//将其链入按其pid计算得的杂凑队列nr_threads++;//进程数加1write_unlock_irq(&tasklist_lock);if (p->ptrace & PT_PTRACED)send_sig(SIGSTOP, p, 1);wake_up_process(p);//将子进程"唤醒",也就是将其挂入可执行进程队列等待调用++total_forks;fork_out:if ((clone_flags & CLONE_VFORK) && (retval > 0))//如果clone_flags中CLONE_VFORK位置1down(&sem);//让父进程在一个信号量上执行一次down()操作,以达到扣留父进程的目的return retval;//返回p->pid,也就是子进程的pidbad_fork_cleanup_sighand:exit_sighand(p);bad_fork_cleanup_fs:exit_fs(p); /* blocking */bad_fork_cleanup_files:exit_files(p); /* blocking */bad_fork_cleanup:put_exec_domain(p->exec_domain);if (p->binfmt && p->binfmt->module)__MOD_DEC_USE_COUNT(p->binfmt->module);bad_fork_cleanup_count:atomic_dec(&p->user->processes);free_uid(p->user);bad_fork_free:free_task_struct(p);goto fork_out;}

    其中regs对父进程系统堆栈的指针,stack_start为用户空间堆栈指针。


    alloc_task_struct为子进程分配两个连续的物理页面,低端用作子进程的task_struct结构,高端则用作其系统空间堆栈,代码如下:

#define alloc_task_struct() ((struct task_struct *) __get_free_pages(GFP_KERNEL,1)


    copy_flags,将参数clone_flags中的标志位略加补充和变换,然后写入p->flags。
static inline void copy_flags(unsigned long clone_flags, struct task_struct *p){unsigned long new_flags = p->flags;new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU | PF_VFORK);new_flags |= PF_FORKNOEXEC;if (!(clone_flags & CLONE_PTRACE))p->ptrace = 0;if (clone_flags & CLONE_VFORK)new_flags |= PF_VFORK;p->flags = new_flags;}


    对于fork来说,clone_flags为SIGCHLD,copy_files,copy_fs,copy_sighand,copy_mm都是要真正复制

    copy_files,代码如下:

static int copy_files(unsigned long clone_flags, struct task_struct * tsk){struct files_struct *oldf, *newf;struct file **old_fds, **new_fds;int open_files, nfds, size, i, error = 0;/* * A background process may not have any files ... */oldf = current->files;if (!oldf)goto out;if (clone_flags & CLONE_FILES) {//clone_flags中CLONE_FILES标志位为1atomic_inc(&oldf->count);//只是增加计数goto out;}tsk->files = NULL;error = -ENOMEM;newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);if (!newf) goto out;atomic_set(&newf->count, 1);newf->file_lock    = RW_LOCK_UNLOCKED;newf->next_fd    = 0;newf->max_fds    = NR_OPEN_DEFAULT;newf->max_fdset    = __FD_SETSIZE;newf->close_on_exec = &newf->close_on_exec_init;newf->open_fds    = &newf->open_fds_init;newf->fd    = &newf->fd_array[0];/* We don't yet have the oldf readlock, but even if the old           fdset gets grown now, we'll only copy up to "size" fds */size = oldf->max_fdset;if (size > __FD_SETSIZE) {newf->max_fdset = 0;write_lock(&newf->file_lock);error = expand_fdset(newf, size);write_unlock(&newf->file_lock);if (error)goto out_release;}read_lock(&oldf->file_lock);open_files = count_open_files(oldf, size);/* * Check whether we need to allocate a larger fd array. * Note: we're not a clone task, so the open count won't * change. */nfds = NR_OPEN_DEFAULT;if (open_files > nfds) {read_unlock(&oldf->file_lock);newf->max_fds = 0;write_lock(&newf->file_lock);error = expand_fd_array(newf, open_files);write_unlock(&newf->file_lock);if (error) goto out_release;nfds = newf->max_fds;read_lock(&oldf->file_lock);}old_fds = oldf->fd;new_fds = newf->fd;memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);for (i = open_files; i != 0; i--) {struct file *f = *old_fds++;if (f)get_file(f);*new_fds++ = f;}read_unlock(&oldf->file_lock);/* compute the remainder to be cleared */size = (newf->max_fds - open_files) * sizeof(struct file *);/* This is long word aligned thus could use a optimized version */ memset(new_fds, 0, size); if (newf->max_fdset > open_files) {int left = (newf->max_fdset-open_files)/8;int start = open_files / (8 * sizeof(unsigned long));memset(&newf->open_fds->fds_bits[start], 0, left);memset(&newf->close_on_exec->fds_bits[start], 0, left);}tsk->files = newf;error = 0;out:return error;out_release:free_fdset (newf->close_on_exec, newf->max_fdset);free_fdset (newf->open_fds, newf->max_fdset);kmem_cache_free(files_cachep, newf);goto out;}

    待我们学习了文件系统后再仔细分析。


    copy_fs,代码如下:

static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk){if (clone_flags & CLONE_FS) {//clone_flags中CLONE_FS标志位为1atomic_inc(current->fs->count);//只是增加计数return 0;}tsk->fs = __copy_fs_struct(current->fs);if (!tsk->fs)return -1;return 0;}
static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old){struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);/* We don't need to lock fs - think why ;-) */if (fs) {atomic_set(&fs->count, 1);fs->lock = RW_LOCK_UNLOCKED;fs->umask = old->umask;read_lock(&old->lock);fs->rootmnt = mntget(old->rootmnt);fs->root = dget(old->root);fs->pwdmnt = mntget(old->pwdmnt);fs->pwd = dget(old->pwd);if (old->altroot) {fs->altrootmnt = mntget(old->altrootmnt);fs->altroot = dget(old->altroot);} else {fs->altrootmnt = NULL;fs->altroot = NULL;}read_unlock(&old->lock);}return fs;}
    我们看到,在这里要复制的是fs_struct数据结构,而不复制更深层的数据结构,对于更深层的数据结构通过mntget()和dget()递增响应数据结构*享计数。


    copy_sighand,代码如下:

static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk){struct signal_struct *sig;if (clone_flags & CLONE_SIGHAND) {//如果clone_flags中CLONE_SIGHAND标志位为1atomic_inc(current->sig->count);//增加计数return 0;}sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);tsk->sig = sig;if (!sig)return -1;spin_lock_init(&sig->siglock);atomic_set(&sig->count, 1);memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action));return 0;}
struct signal_struct {atomic_tcount;struct k_sigactionaction[_NSIG];spinlock_tsiglock;};


     copy_mm,代码如下:

static int copy_mm(unsigned long clone_flags, struct task_struct * tsk){struct mm_struct * mm, *oldmm;int retval;tsk->min_flt = tsk->maj_flt = 0;tsk->cmin_flt = tsk->cmaj_flt = 0;tsk->nswap = tsk->cnswap = 0;tsk->mm = NULL;tsk->active_mm = NULL;/* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */oldmm = current->mm;if (!oldmm)//如果是内核线程,那么oldmm为null,直接返回return 0;if (clone_flags & CLONE_VM) {//如果clone_flags中CLONE_VM标志位为1atomic_inc(&oldmm->mm_users);//增加mm_users计数mm = oldmm;goto good_mm;}retval = -ENOMEM;//clone_flags中CLONE_VM标志位为0mm = allocate_mm();//分配mm_structif (!mm)goto fail_nomem;/* Copy the current MM stuff.. */memcpy(mm, oldmm, sizeof(*mm));if (!mm_init(mm))//初始化mm_structgoto fail_nomem;down(&oldmm->mmap_sem);retval = dup_mmap(mm);//vm_area_struct数据结构和页面映射表的复制up(&oldmm->mmap_sem);/* * Add it to the mmlist after the parent. * * Doing it this way means that we can order * the list, and fork() won't mess up the * ordering significantly. */spin_lock(&mmlist_lock);list_add(&mm->mmlist, &oldmm->mmlist);spin_unlock(&mmlist_lock);if (retval)goto free_pt;/* * child gets a private LDT (if there was an LDT in the parent) */copy_segments(tsk, mm);//对ldt来说,我们不关心if (init_new_context(tsk,mm))//空语句goto free_pt;good_mm:tsk->mm = mm;tsk->active_mm = mm;return 0;free_pt:mmput(mm);fail_nomem:return retval;}
    显然,对mm_struct的复制也只是在clone_flags中CLONE_VM标志位为0时才真正进行,否则就只是通过已经复制的指针共享父进程的用户空间。对mm_struct的复制就不只是局限于这个数据结构本身了,也包括了对更深层数据结构的复制。其中最重要的是vm_area_struct数据结构和页面映射表的复制,这是由dup_mmap()复制的。

    allocate_mm,分配mm_struct,代码如下:

#define allocate_mm()(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))


    mm_init,初始化mm_struct,代码如下:

static struct mm_struct * mm_init(struct mm_struct * mm){atomic_set(&mm->mm_users, 1);atomic_set(&mm->mm_count, 1);init_MUTEX(&mm->mmap_sem);mm->page_table_lock = SPIN_LOCK_UNLOCKED;mm->pgd = pgd_alloc();//指向新分配的页目录表if (mm->pgd)return mm;free_mm(mm);return NULL;}


   dup_mmap是vm_area_struct数据结构和页面映射表的复制,代码如下:

static inline int dup_mmap(struct mm_struct * mm){struct vm_area_struct * mpnt, *tmp, **pprev;int retval;flush_cache_mm(current->mm);mm->locked_vm = 0;mm->mmap = NULL;mm->mmap_avl = NULL;mm->mmap_cache = NULL;mm->map_count = 0;mm->cpu_vm_mask = 0;mm->swap_cnt = 0;mm->swap_address = 0;pprev = &mm->mmap;for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {//对于父进程的所有虚拟空间进行轮询struct file *file;retval = -ENOMEM;if(mpnt->vm_flags & VM_DONTCOPY)continue;tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);//分配子进程的vm_structif (!tmp)goto fail_nomem;*tmp = *mpnt;//父进程的vm_struct复制给子进程vm_structtmp->vm_flags &= ~VM_LOCKED;tmp->vm_mm = mm;mm->map_count++;//虚拟空间数加1tmp->vm_next = NULL;file = tmp->vm_file;if (file) {//假设为nullstruct inode *inode = file->f_dentry->d_inode;get_file(file);if (tmp->vm_flags & VM_DENYWRITE)atomic_dec(&inode->i_writecount);      /* insert tmp into the share list, just after mpnt */spin_lock(&inode->i_mapping->i_shared_lock);if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)mpnt->vm_next_share->vm_pprev_share =&tmp->vm_next_share;mpnt->vm_next_share = tmp;tmp->vm_pprev_share = &mpnt->vm_next_share;spin_unlock(&inode->i_mapping->i_shared_lock);}/* Copy the pages, but defer checking for errors */retval = copy_page_range(mm, current->mm, tmp);//复制虚拟空间对应的页目录表项和页表项if (!retval && tmp->vm_ops && tmp->vm_ops->open)tmp->vm_ops->open(tmp);/* * Link in the new vma even if an error occurred, * so that exit_mmap() can clean up the mess. */*pprev = tmp;//下一个虚拟空间pprev = &tmp->vm_next;if (retval)goto fail_nomem;}retval = 0;if (mm->map_count >= AVL_MIN_MAP_COUNT)//当虚拟空间数大于AVL_MIN_MAP_COUNTbuild_mmap_avl(mm);//形成avl树,方便查找fail_nomem:flush_tlb_mm(current->mm);return retval;}


    copy_page_range,代码如下:

int copy_page_range(struct mm_struct *dst, struct mm_struct *src,struct vm_area_struct *vma){pgd_t * src_pgd, * dst_pgd;unsigned long address = vma->vm_start;unsigned long end = vma->vm_end;unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;//可写,而又不是共享src_pgd = pgd_offset(src, address)-1;dst_pgd = pgd_offset(dst, address)-1;for (;;) {pmd_t * src_pmd, * dst_pmd;src_pgd++; dst_pgd++;/* copy_pmd_range */if (pgd_none(*src_pgd))goto skip_copy_pmd_range;if (pgd_bad(*src_pgd)) {pgd_ERROR(*src_pgd);pgd_clear(src_pgd);skip_copy_pmd_range:address = (address + PGDIR_SIZE) & PGDIR_MASK;if (!address || (address >= end))goto out;continue;}if (pgd_none(*dst_pgd)) {if (!pmd_alloc(dst_pgd, 0))goto nomem;}src_pmd = pmd_offset(src_pgd, address);dst_pmd = pmd_offset(dst_pgd, address);do {pte_t * src_pte, * dst_pte;/* copy_pte_range */if (pmd_none(*src_pmd))goto skip_copy_pte_range;if (pmd_bad(*src_pmd)) {pmd_ERROR(*src_pmd);pmd_clear(src_pmd);skip_copy_pte_range:address = (address + PMD_SIZE) & PMD_MASK;if (address >= end)goto out;goto cont_copy_pmd_range;}if (pmd_none(*dst_pmd)) {if (!pte_alloc(dst_pmd, 0))goto nomem;}src_pte = pte_offset(src_pmd, address);dst_pte = pte_offset(dst_pmd, address);do {pte_t pte = *src_pte;struct page *ptepage;/* copy_one_pte */if (pte_none(pte)) //第一种情况goto cont_copy_pte_range_noset;if (!pte_present(pte)) { //第二种情况swap_duplicate(pte_to_swp_entry(pte));goto cont_copy_pte_range;}ptepage = pte_page(pte);//得到页表项所指的页面if ((!VALID_PAGE(ptepage)) ||  //第三种情况    PageReserved(ptepage))goto cont_copy_pte_range;/* If it's a COW mapping, write protect it both in the parent and the child */if (cow) {//第四种情况ptep_set_wrprotect(src_pte);//改成只读pte = *src_pte;}/* If it's a shared mapping, mark it clean in the child */if (vma->vm_flags & VM_SHARED)pte = pte_mkclean(pte);pte = pte_mkold(pte);get_page(ptepage);//增加页面使用计数                                //cow为0时,只读页面,第五种情况cont_copy_pte_range:set_pte(dst_pte, pte);//将此表项复制到子进程的页表项cont_copy_pte_range_noset:address += PAGE_SIZE;if (address >= end)goto out;src_pte++;dst_pte++;} while ((unsigned long)src_pte & PTE_TABLE_MASK);cont_copy_pmd_range:src_pmd++;dst_pmd++;} while ((unsigned long)src_pmd & PMD_TABLE_MASK);}out:return 0;nomem:return -ENOMEM;}
    开头是对页目录表项的循环,中间是对中间目录项的循环,最后是对页表项的循环,我们把注意力放在最后一层循环,也就是对页表项的循环。

    循环中检查父进程一个页表中的每一个表项,根据表项的内容决定具体的操作。而表项的内容,则无非是下面这么一些可能:

    1、表项的内容为全0,所以pte_none()返回1。说明该页面的映射尚未建立,或者说是个“空洞”,因此不需要做任何事。

  

    2、表项的最低位,即_PAGE_PRESENT标志位为0,所以pte_present返回1。说明映射已建立,但是该页面目前不在内存中,已经被调出到交换设备上。此时表项的内容指向"盘面页面"的地点,而现在该盘上页面多了一个"用户",所以要通过swap_duplicate()递增它的共享计数,就转到cont_copy_pte_range将此表项复制到子进程的页表项。


    3、映射已建立,但是物理页面不是一个有效的内存页面,所以VALID_PAGE()返回0。读者可以回顾一下,我们以前讲过有些物理页面在外设接口卡上,相应的地址为“总线地址”,而并不是内存页面。这样的页面,就转到cont_copy_pte_range将此表项复制到子进程的页表项。


4、需要从父进程复制的可写页面。

本来,此时应该分配一个空闲的内存页面,再从父进程的页面把内容复制过来,并为之建立映射。显然,这个代价是不小的。然后,对这么辛辛苦苦复制下来的页面,子进程是否一定会用呢?特别是会有写访问么?如果只是读访问,则只要父进程从此不再写这个页面,就完全可以通过复制指针来共享这个页面,那不知要省事多少了。所以,Linux内核采用了一种称为"copy on write"的技术,先通过复制页表项暂时共享这个页面,到子进程真的要写着个页面时再次分配页面和复制。变量cow是"copy on write"的缩写。可写,而又不是共享。实际上,对于绝大多数的可写虚拟区间,cow都是1。在通过复制页表项暂时共享一个页表项时要做两件重要的事情,首先将父进程的页表项改成写保护(只读),然后把已经改成写保护的表项设置到子进程的页表项。这样一来,响应的页面在两个进程中都变成"只读"了,当不管是父进程或是子进程企图写入该页面时,都会引起一次页面异常。而页面异常处理程序对此的反应则是另行分配一个物理页面,并把内容真正地复制到新的物理页面中,让父、子进程各自拥有自己的物理页面,然后将两个页表项中相应的表项改成可写。可是copy_on_write只有在父、子进程各自拥有自己的页表时才能实现。当CLONE_VM标志位为1时,因为父、子进程通过指针共享用户空间,copy_on_write就用不上了。此时,父、子进程是在真正的意义上共享用户空间,父进程写入其用户空间的内容同时也“写入”子进程的用户空间。

 

5、父进程的只读页面。这种页面本来就不需要复制。因而可以复制页表项共享物理页面。


返回到do_fork,继续执行copy_thread,代码如下:

int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,unsigned long unused,struct task_struct * p, struct pt_regs * regs){struct pt_regs * childregs;childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1;//指向了子进程系统空间堆栈中的pt_regs结构struct_cpy(childregs, regs);//把当前进程系统空间堆栈中的pt_regs结构复制过去childregs->eax = 0;//子进程系统空间堆栈中的pt_regs结构eax置成0childregs->esp = esp;//子进程系统空间堆栈中的pt_regs结构esp置成这里的参数esp,在fork中,则来自调用do_fork()前夕的regs.esp,所以实际上并没有改变p->thread.esp = (unsigned long) childregs;//子进程系统空间堆栈中pt_regs结构的起始地址p->thread.esp0 = (unsigned long) (childregs+1);//指向子进程的系统空间堆栈的顶端p->thread.eip = (unsigned long) ret_from_fork;savesegment(fs,p->thread.fs);savesegment(gs,p->thread.gs);unlazy_fpu(current);struct_cpy(&p->thread.i387, ¤t->thread.i387);return 0;}
    最后形成如下图:

Linux内核源代码情景分析-fork()


    二、clone和vfork

    clone的用户态接口是:int clone(int (*fn)(void *arg), void *child_stack, int flags, void *arg)。

    我们看下这clone、fork、vfork几个系统调用的区别:
asmlinkage int sys_fork(struct pt_regs regs){return do_fork(SIGCHLD, regs.esp, &regs, 0);}asmlinkage int sys_clone(struct pt_regs regs){unsigned long clone_flags;unsigned long newsp;clone_flags = regs.ebx;//就是用户态的flagsnewsp = regs.ecx;//就是用户态的child_stackif (!newsp)newsp = regs.esp;return do_fork(clone_flags, newsp, &regs, 0);}/* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */asmlinkage int sys_vfork(struct pt_regs regs){return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0);//主要区别是有两个标志位CLONE_VFORK,CLONE_VM}

    如果完全没有用户空间,就称为"内核线程";而如果共享用户空间则就是为”用户线程“。

    那么vfork出来的是用户线程,共享用户空间,copy_mm中代码如下:
if (clone_flags & CLONE_VM) {//如果clone_flags中CLONE_VM标志位为1atomic_inc(&oldmm->mm_users);//增加mm_users计数mm = oldmm;goto good_mm;}
    
    vfork和fork还有一个区别就是CLONE_VFORK标志位,体现在代码中,do_fork的最后:
fork_out:if ((clone_flags & CLONE_VFORK) && (retval > 0))//如果clone_flags中CLONE_VFORK位置1down(&sem);//让父进程在一个信号量上执行一次down()操作,以达到扣留父进程的目的return retval;
   当调用do_fork的参数中CLONE_VFORK标志位为1时,一定要保证让子进程先运行,一直到子进程通过系统调用execve执行一个新的可执行程序或者通过系统调用exit()退出系统时,才可以恢复父进程的运行。为什么呢?在创建子进程时,如果CLONE_VM为1,只是简单地复制父进程的task_struct结构中指向其mm_struct结构的指针来共享。此时,父、子进程是在真正的意义上共享用户空间,父进程写入其用户空间的内容同时也“写入”子进程的用户空间。绝不能让两个进程都回到用户空间并发地运行;否则,必然是两个进程最终都乱来一气后者因非法越界访问而死亡。解决的办法只能是”扣留“其中一个进程,而只让一个进程回到用户空间,直到两个进程不再共享它们的用户空间后者其中一个进程消亡为至。
所以才有了上面的操作,让父进程在一个信号量上执行一次down()操作,以达到扣留父进程的目的。 那么谁来执行up操作呢? 子进程在通过execve执行一个新的可执行程序时会做这件事,此外,子进程在通过exit()退出系统时也会做这件事。代码如下:
void mm_release(void){struct task_struct *tsk = current;/* notify parent sleeping on vfork() */if (tsk->flags & PF_VFORK) {tsk->flags &= ~PF_VFORK;up(tsk->p_opptr->vfork_sem);}}

    三、内核线程
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags){long retval, d0;__asm__ __volatile__("movl %%esp,%%esi\n\t"   //系统调用前的堆栈指针赋值给esi"int $0x80\n\t""cmpl %%esp,%%esi\n\t"//系统调用后的堆栈指针和系统调用前的堆栈指针相比,如果不同就是子进程,如果相同就是父进程"je 1f\n\t"        //跳到父进程"movl %4,%%eax\n\t"//把参数arg压入堆栈,作为参数"pushl %%eax\n\t""call *%5\n\t" //call fn"movl %3,%0\n\t" //eax为_NR_exit"int $0x80\n" //执行exit系统调用"1:\t":"=&a" (retval), "=&S" (d0):"0" (__NR_clone), "i" (__NR_exit),//eax为_NR_clone "r" (arg), "r" (fn),  "b" (flags | CLONE_VM)//ebx为flags | CLONE_VM: "memory");return retval;}
 
刚开始eax为_NR_clone,ebx为flags | CLONE_VM,然后调用int 0x80系统调用,那么就进入了sys_clone,代码如下:
asmlinkage int sys_clone(struct pt_regs regs){unsigned long clone_flags;unsigned long newsp;clone_flags = regs.ebx;//就是用户态的flags | CLONE_VMnewsp = regs.ecx;//newsp为nullif (!newsp)newsp = regs.esp;return do_fork(clone_flags, newsp, &regs, 0);}
    那么kernel_thread出来的是内核线程,mm指针为null,copy_mm中代码如下:
oldmm = current->mm;if (!oldmm)//如果是内核线程,那么oldmm为null,直接返回return 0;

    最后附上,所有标志位的作用:

#define CSIGNAL0x000000ff/* signal mask to be sent at exit */#define CLONE_VM0x00000100/* set if VM shared between processes */#define CLONE_FS0x00000200/* set if fs info shared between processes */#define CLONE_FILES0x00000400/* set if open files shared between processes */#define CLONE_SIGHAND0x00000800/* set if signal handlers and blocked signals shared */#define CLONE_PID0x00001000/* set if pid shared */#define CLONE_PTRACE0x00002000/* set if we want to let tracing continue on the child too */#define CLONE_VFORK0x00004000/* set if the parent wants the child to wake it up on mm_release */#define CLONE_PARENT0x00008000/* set if we want to have the same parent as the cloner */#define CLONE_THREAD0x00010000/* Same thread group? */#define CLONE_SIGNAL(CLONE_SIGHAND | CLONE_THREAD)