3G基础知识1

时间:2023-01-16 04:47:34
3G 是什么 ?
3G是"3rd Generation"(第三代)的缩写,即第三代移动通信系统(IMT-2000),它是高速移动数据网络通信领域的行业术语。纵观移动通讯系统的发展历史,模拟移动手机被称作"第一代";数字移动手机被列入"第二代";而其后的发展技术被称作"第三代"。当前全球还存在多种第一代和第二代通讯系统,它们成为全球范围内普及单一通讯终端设备的一个阻力。另外,3G技术面临的最大挑战是系统的标准化,如何能够支持单一通讯终端设备可以在全球范围内得到通用。3G技术的设计基础是支持全系列的移动多媒体系统,其对多种数据速率提供灵活的支持,不仅可以传送语音数据,还可以根据需要传送视频数据。使用3G网络,我们可以传输需要高带宽的应用数据,例如:它可以随时随地根据需要提供全视频、视频会议、高质量语音和Web数据服务。
在日本,目前存在两种3G系统:NTT DoCoMo公司和Vodafone公司使用的是W-CDMA;而au公司使用的是CDMA2000 1x。
3G -324M 协议
第三代移动通信系统IMT-2000的技术标准由ITU-R和ITU-T组织制定。ITU-R和ITU-T组织接受和评估各个国家和地区标准组织提交的建议(草案标准)。参与制定草案标准的主要标准组织包括:ARIB组织(Association of Radio Industries and Businesses)、日本TTC组织(Telecommunication Technology Committee)、欧洲ETSI组织、美国T1组织和韩国TTA组织。3GPP项目小组(Third Generation Partnership Project)就是由上述标准组织参与组成的,目标是制定全球性应用草案标准。3G-324M(*1)是3GPP组织制定的框架性标准,其制定基础是ITU-T H.324/M和其它国际标准,它可以在无线电路交换网络支持实时多媒体服务应用。该标准包含的几个子协议标准是:语音、视频、用户数据和控制数据的多路复用和分离(H.223);in-band呼叫控制(H.245)。它定义的功能组件和端到端通信程序用于支持可视化音频通讯应用。
(*1) 3G-324M: H.323是ITU-T组织针对基于互联网和局域网的通讯系统和终端设备制定的协议标准。而SIP是由IETF组织制定的著名的多媒体通讯协议标准。通讯网络需要协议标准支持,通过网关实现与SIP协议和H.323系统的互连,其中专门针对移动通讯的协议标准是H.324/M。3G-324M标准是H.324/M的进一步发展,它用来支持IMT-2000。
3G-324M标准在技术上与H.324/M非常相似,但是它指定H.263作为强制基本标准,而把MPEG-4作为视频编码推荐标准。AMR是音频编码强制标准。H.223制定了多路音频和视频信号在单个移动通讯信道的多路复用应用标准,H.245制定了在各个阶段的消息控制交换标准。但是,在易出错网络的高效传输方法在3G-324M标准中制定。另外,level 2(由H.223附录B制定)被制定为强制的多路复用协议层,它可以提供增强的容错控制。
3G-324M标准的协议配置细节如下所示。
3G -324M 媒体编码集
3G-324M为视频、音频和数据等媒体类型定义了强制性的媒体编码标准。
(1)视频编码
3G-324M指定H.263为强制性基准协议(附录中的扩展标准除外),而把MPEG-4制定为推荐视频编码标准。H.263作为老的编码标准仍然应用于现有的H.323系统,因而保留它可以提供系统兼容性。MPEG-4比H.263基准协议拥有更高的灵活性,它提供了更先进的错误检测和纠错方法。
这两种编码集一般均采用QCIF(Quarter Common Intermediate Format)输入图象格式。MPEG-4采用一系列工具集提高了容错性。它采用的方法包括:数据分区、可反置变长编码(RVLC,Reversible Variable Length Codes)、再同步标识和HEC(header extension codes)。
数据分区方法通过标识符分别提供离散余弦 (DCT) 系数和移动矢量参数,这样可以避免某组数据的出错影响到另外一组数据的解码。例如,如果在某个给定的宏块中检测到DCT系数错误,我们仍然可以隐藏DCT系数错误,采用正确的移动矢量信息重新创建宏块。这样,与解码过程中采用前面相邻数据帧的正确宏块替换出错宏块的方法相比,该方法可以提供更高的视频图象解码质量。
RVLC方法允许对特定的数据块从前端(前向)或者末端(反向)开始解码。这种方法提高了对出错数据集的修复机率。
再同步标识符是插入比特流中的一些代码,它可以帮助解码器对解码进程进行重新同步。
HEC支持更高效的解码进程再同步,其扩展的再同步标识符还包含了时间信息。
(2)语音编码
ITU-T标准对语音编码没有强制性要求,只有IMT-2000语音服务应用强制性要求AMR编码(Adaptive Multi-Rate),用于支持3G-324M设备。G.723.1是3GPP推荐的可选老编码标准,它可以提供兼容H.323等标准。
AMR语音编码的最高处理速率是12.2 kbps,取决于不同的基站距离、信号干扰和流量情况,AMR的实际传输速率范围是4.75 kbps ~ 12.2 kbps。AMR还支持柔化噪音生成(CNG,Comfort Noise Generation)和非连续传输模式(DTX,Discontinuous Transmission)。它还可以根据不同的实际情况动态调整处理速率和错误控制,在当前的信道环境下提供最佳的语音质量。
AMR编码还支持非对等错误检测和预防(UED/UEP,Unequal Error Detection and Protection)。这种方法基于可判断的数据相关性对比特流进行分类,如果在最相关的数据中检测到错误,就可以对AMR数据帧直接进行解码,并隐藏数据错误。
(3) 数据通讯协议
T.120是数据会议应用推荐的数据通讯协议。但是,当前还没有制定任何强制性协议,因而它也只是一种可选标准。
H.245 呼叫控制
H.245是面向H.324、 H.310、H.323和V.75而定义的通用呼叫控制标准。与其它ITU-T推荐标准两年一修订的程序不同,H.245需要根据需求随时对其进行修订,这主要是因为它应用于相当多种类的系统中,我们需要快速对其功能实现增强以满足其高速发展的需要。
H.245采用简单再传输协议(SRP,Simple Retransmission Protocol),或者采用可编号选项的SRP协议(NSRP,Numbered SRP)。H.245制定了一个控制信道分段和重新装配的协议层(CCSRL,Control Channel Segmentation and Reassembly Layer),它可以在易出错环境下保证应用的可靠性。SRP、NSRP和CCSRL的使用由协商层确定。H.245采用ASN.1(Abstract Syntax Notation 1)标准定义自己的消息结构。另外,消息数据基于PER(Packed Encoding Rule)规则采用二进制编码。
在通话双方启动H.245会话之前,一个必须解决的问题是:如果端点设备之间出现协议冲突,究竟由哪个端点设备负责解决,或充当主角。不同的端点设备在H.223信号多路复用/信号分离、视频和音频编码、数据共享和其它功能领域可能存在着不同的差异。H.245提供了一种功能交换的功能,它支持两端设备通过协商确定一组通用的功能集。
媒体和数据流采用逻辑信道的方式进行传输,需要提供相应的控制支持。H.245采用逻辑信道信令,支持逻辑信道的开关和参数交换。在H.245标准中,发送方根据接收方广播的可支持功能集,确定双方通讯的编码集和参数。如果接收方有指定的功能需求,它可以采用模式请求的方式向传送方发送请求信号。
  最后,H.245采用一组呼叫控制命令和提示符,提供数据流量控制、用户输入提示、视频编码控制、信号抖动和失真提示。
*H.245的用户提示符(UII,User Input Indication)在需要用户交互的所有应用服务中扮演着重要的角色。对于视频消息应用,典型的UII应用一般提供用户偏好选择、消息录音和查询、以及常规的邮箱管理功能。H.245提供可靠的信令协议,可以确保各种消息(如:DTMF音频)能够得到可靠的传输。H.245 UII提供用户提示的两级表示:字符型提示和表示字符串提示时间长短的信息。例如,特定的键被用户按了多长时间。
H.223 多路复用和信号分离
为了提供不同级别的容错支持,3G-324M定义了多级H.223传输。在H.223多媒体多路复用协议中,其转换层(Adaptation Layer)提供逻辑信道的QoS,而多路复用和信号分离层(Multiplexing and Demultiplexing layer)提供多路逻辑信道到单个信道的合并。它可以同时支持分时多路复用和包多路服用两种模式,可提供应用需要的灵活性、高效性和低延迟。
电路交换网络的多媒体通讯需要多路复用技术,以支持视频、语音和数据流量的混合同步传输。多路复用技术为每种媒体类型指定了一个逻辑信道,可以把不同媒体源提供的多路比特流合并成单个比特流,在单路信道上进行传输。
媒体类型不同,其对应的逻辑信道对QoS的要求是不一样的。例如,对于数据传输来说,其对延迟的要求一般不会太严格,但是它要求完全无错误的传输。另外,语音传输对延迟有着严格的限制,其综合质量可以在10-3错误率的基础上实现。视频通讯对传输的要求介于数据和音频通讯之间。因此,多路复用技术需要这么一种功能,它可以根据不同的媒体编码需求,对逻辑信道提供不同的QoS控制。