近年来,随着多媒体技术和计算机网络的飞速发展,全世界的数字图像的容量正以惊人的速度增长。无论是军用还是民用设备,每天都会产生容量相当于数千兆字节的图像。这些数字图像中包含了大量有用的信息。然而,由于这些图像是无序地分布在世界各地,图像中包含的信息无法被有效地访问和利用。这就要求有一种能够快速而且准确地查找访问图像的技术,也就是所谓的图像检索技术。自从20世纪70年代以来,在数据库系统和计算机视觉两大研究领域的共同推动下,图像检索技术已逐渐成为一个非常活跃的研究领域。数据库和计算机视觉两大领域是从不同的角度来研究图像检索技术的,前者基于文本的,而后者是基于视觉的。
基于文本的图像检索技术(text-based image retrieval)的历史可以追溯到20世纪70年代末期。当时流行的图像检索系统是将图像作为数据库中存储的一个对象,用关键字或*文本对其进行描述。查询操作是基于该图像的文本描述进行精确匹配或概率匹配,有些系统的检索模型还是有词典支持的。另外,图像数据模型、多维索引、查询评价等技术都在这样一个框架之下发展起来。然而,完全基于文本的图像检索技术存在着严重的问题。首先,目前的计算机视觉和人工智能技术都无法自动对图像进行标注,而必须依赖于人工对图像做出标注。这项工作不但费时费力,而且手工的标注往往是不准确或不完整的,还不可避免地带有主观偏差。也就是说,不同的人对同一幅图像有不同的理解方法,这种主观理解的差异将导致图像检索中的失配错误。此外,图像中所包含的丰富的视觉特征(颜色或纹理等)往往无法用文本进行客观地描述的。
90年代初期,随着大规模数字图像库的出现,上述的问题变得越来越尖锐。为克服这些问题,基于内容的图像检索技术(content-based image retrieval)应运而生。区别于原有系统中对图像进行人工标注的做法,基于内容的检索技术自动提取每幅图像的视觉内容特征作为其索引,如色彩、纹理、形状等。此后几年中,这个研究领域中的许多技术发展起来,一大批研究性的或商用的图像检索系统被建立起来。这个领域的发展主要来归功于计算机视觉技术的进步,在文献[]中有对这一领域的详细介绍。
应该认识到,基于内容的图像检索系统具有与传统基于文本的检索系统完全不同的构架。首先,由于图像依赖其视觉特征而非文本描述进行索引,查询将根据图像视觉特征的相似度进行。用户通过选择具有代表性的一幅或多幅例子图像来构造查询,然后由系统查找与例子图像在视觉内容上比较相似的图像,按相似度大小排列返回给用户。这就是所谓的通过例子图像的检索(query by image example)。另外,基于内容的检索系统一般通过可视化界面和用户进行频繁的交互,以便于用户能够方便地构造查询、评估检索结果和改进检索结果。
下图表示了基于内容的图像检索系统的体系结构。系统的核心是图像特征数据库。图像特征既可以从图像本身提取得到,又可以通过用户交互获得,并用于计算图像之间的相似度。用户和系统之间的关系是双向的:用户可以向系统提出查询要求,系统根据查询要求返回查询结果,用户还通过对查询结果的相关反馈来改进查询结果。图中还标出了基于内容的图像检索中的一些关键环节:
1) 选择、提取和索引能够充分表达图像的视觉特征。
2) 处理基于相似度的图像检索。
3) 处理用户对检索结果的相关反馈,改善检索结果。
相关文章
- 基于 AI智能体、大模型、RAG、Agent 等技术构建公司内部闭环智能问答系统的详细方案,结合 Spring Boot + Vue 管理系统 的改造思路
- iOS 基于OpenCV图像比较的常见方法
- 基于生成式模型的图像生成技术
- matlab绘制二元一次函数图像_基于MATLAB的数学图像绘制
- 基于赛灵思 Xilinx RFSoC 的 VPX 6U 高速数据采集模块技术讨论
- 基于深度学习的医学图像分割(Medical Image Segmentation Using Deep Learning: A Survey)
- 基于WebRTC技术的视频会议系统
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别-视觉与音频信号的融合。单独依赖视觉或音频的模型,往往会忽略二者之间的微妙关联,导致错误理解。此外,许多模型缺乏 可解释性,无法清晰说明如何得出情感判断,更别提在陌生场景下保持稳定性。 阿里巴巴研究团队 正式推出 R1-Omni (https://r1-omni.com/),一种 基于“可验证奖励强化学习”(RLVR)的全模态大语言模型,专为情感识别优化。相比现有方法,R1-Omni 不仅能准确预测情感,还能提供详细的推理过程,让 AI 决策更透明、更可解释。 R1-Omni 如何突破情感识别难题? 💡 核心技术 1:强化学习 + 可验证奖励(RLVR)
- AI学习——图像分类技术深度解析:从传统方法到深度学习的演进
- AI与.NET技术实操系列(六):基于图像分类模型对图像进行分类-实际应用场景