损失函数(Loss Function) -1

时间:2022-01-19 18:36:54

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf

  1. Loss Function

    损失函数可以看做 误差部分(loss term) + 正则化部分(regularization term)

    损失函数(Loss Function) -1

1.1 Loss Term

  • Gold Standard (ideal case)
  • Hinge (SVM, soft margin)
  • Log (logistic regression, cross entropy error)
  • Squared loss (linear regression)
  • Exponential loss (Boosting)

Gold Standard 又被称为0-1 loss, 记录分类错误的次数

损失函数(Loss Function) -1

Hinge Loss http://en.wikipedia.org/wiki/Hinge_loss

For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as

损失函数(Loss Function) -1

Note that y should be the "raw" output of the classifier's decision function, not the predicted class label. E.g., in linear SVMs,

损失函数(Loss Function) -1

It can be seen that when t and y have the same sign (meaning y predicts the right class) and

损失函数(Loss Function) -1

, the hinge loss

损失函数(Loss Function) -1

, but when they have opposite sign,

损失函数(Loss Function) -1

increases linearly with y (one-sided error).

来自 <http://en.wikipedia.org/wiki/Hinge_loss>

损失函数(Loss Function) -1

Plot of hinge loss (blue) vs. zero-one loss (misclassification, green:y < 0) for t = 1 and variable y. Note that the hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine.

来自 <http://en.wikipedia.org/wiki/Hinge_loss>

损失函数(Loss Function) -1

在Pegasos: Primal Estimated sub-GrAdient SOlver for SVM论文中

损失函数(Loss Function) -1

这里把第一部分看成正规化部分,第二部分看成误差部分,注意对比ng关于svm的课件

不考虑规则化

损失函数(Loss Function) -1

考虑规则化

损失函数(Loss Function) -1

Log Loss

Ng的课件1,先是讲 linear regression 然后引出最小二乘误差,之后概率角度高斯分布解释最小误差。

然后讲逻辑回归,使用MLE来引出优化目标是使得所见到的训练数据出现概率最大

损失函数(Loss Function) -1

损失函数(Loss Function) -1

损失函数(Loss Function) -1

最大化下面的log似然函数

损失函数(Loss Function) -1

而这个恰恰就是最小化cross entropy!

http://en.wikipedia.org/wiki/Cross_entropy

http://www.cnblogs.com/rocketfan/p/3350450.html 信息论,交叉熵与KL divergence关系

损失函数(Loss Function) -1

损失函数(Loss Function) -1

Cross entropy can be used to define loss function in machine learning and optimization. The true probability

损失函数(Loss Function) -1

is the true label, and the given distribution

损失函数(Loss Function) -1

is the predicted value of the current model.

More specifically, let us consider logistic regression, which (in its most basic guise) deals with classifying a given set of data points into two possible classes generically labelled

损失函数(Loss Function) -1

and

损失函数(Loss Function) -1

. The logistic regression model thus predicts an output

损失函数(Loss Function) -1

, given an input vector

损失函数(Loss Function) -1

. The probability is modeled using thelogistic function

损失函数(Loss Function) -1

. Namely, the probability of finding the output

损失函数(Loss Function) -1

is given by

损失函数(Loss Function) -1

where the vector of weights

损失函数(Loss Function) -1

is learned through some appropriate algorithm such as gradient descent. Similarly, the conjugate probability of finding the output

损失函数(Loss Function) -1

is simply given by

损失函数(Loss Function) -1

The true (observed) probabilities can be expressed similarly as

损失函数(Loss Function) -1

and

损失函数(Loss Function) -1

.

Having set up our notation,

损失函数(Loss Function) -1

and

损失函数(Loss Function) -1

, we can use cross entropy to get a measure for similarity between

损失函数(Loss Function) -1

and

损失函数(Loss Function) -1

:

损失函数(Loss Function) -1

The typical loss function that one uses in logistic regression is computed by taking the average of all cross-entropies in the sample. For specifically, suppose we have

损失函数(Loss Function) -1

samples with each sample labeled by

损失函数(Loss Function) -1

. The loss function is then given by:

损失函数(Loss Function) -1

where

损失函数(Loss Function) -1

, with

损失函数(Loss Function) -1

the logistic function as before.

The logistic loss is sometimes called cross-entropy loss. It's also known as log loss (In this case, the binary label is often denoted by {-1,+1}).[1]

来自 <http://en.wikipedia.org/wiki/Cross_entropy>

因此和ng从MLE角度给出的结论是完全一致的! 差别是最外面的一个负号

也就是逻辑回归的优化目标函数是 交叉熵

损失函数(Loss Function) -1

修正 14.8这个公式 课件里面应该写错了一点 第一个+ 应该是-,这样对应loss 优化目标是越小越好,MLE对应越大也好。

squared loss

损失函数(Loss Function) -1

exponential loss

损失函数(Loss Function) -1

指数误差通常用在boosting中,指数误差始终> 0,但是确保越接近正确的结果误差越小,反之越大。