uva103(最长递增序列,dag上的最长路)

时间:2022-04-04 17:33:34

题目的意思是给定k个盒子,每个盒子的维度有n dimension

问最多有多少个盒子能够依次嵌套

但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2...en) 只要盒子D的任意全排列,小于盒子E,那么就说明

盒子D能放入盒子E中,其实就是将两个盒子的维度排序,如果前一个盒子的维度依次小于后一个盒子,那么就说明前一个盒子能放入后一个盒子中

这个题目能够转化为最长递增子序列。

首先将盒子的维度从小到大排序,然后将k个盒子,按照排序后的第一维度从小到大排序

这样中的目的是,后面的盒子一定放不到前面的盒子里面,这样是为了消除无后效性。

如果不排序,那么将有后效性,比如第一个盒子不选,但是第二个盒子可以放到第一个盒子里面。

然后就转化为最长递增序列的问题了。

 /*
感觉像是变形的最长递增子序列
如何快捷的判断一个盒子进过变换能放到另一个盒子里面呢?
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int INF = <<;
struct node
{
int minNum;
int id;
int dimension[];
bool operator<(const node&rhs)const
{
return minNum < rhs.minNum;
}
}a[];
bool canInput[][];//canInput[i][j]判断j能不能放到i里面去
int dp[];
int path[];
int ans[];
int main()
{ int n,k,i,j,z;
while(scanf("%d%d",&k,&n)!=EOF)
{
memset(ans,,sizeof(ans));
memset(canInput,false,sizeof(canInput));
memset(dp,,sizeof(dp));
for(i=; i<k; ++i)
{
dp[i] = ;
path[i] = i;
a[i].minNum = INF;
a[i].id = i+;
for(j=; j<n; ++j)
{
scanf("%d",&a[i].dimension[j]);
a[i].minNum = min(a[i].minNum,a[i].dimension[j]);
}
sort(a[i].dimension,a[i].dimension+n);
} sort(a,a+k);
for(i=; i<k; ++i)//预处理,判断i能不能放到j里面去
for(j=i+; j<k; ++j)
{
bool can = true;
for(z=; z<n; ++z)
{
if(a[i].dimension[z] >= a[j].dimension[z])
can = false;
}
if(can)
canInput[j][i] = true;
}
//这里就是求最长递增子序列,时间复杂度是O(k*k)
for(i=; i<k; ++i)
for(j=; j<i; ++j)
{
if(canInput[i][j])//预处理之后,就变成了一维的最长递增子序列的求解了
{
if(dp[j]+ >dp[i])
{
dp[i] = dp[j]+;
path[i] = j;
//break; 这里可不能break, 比如例子:1 2 3 4 5 11 12 13 10 14
}
}
}
int cnt = ,index;
for(i=; i<k; ++i)
if(cnt < dp[i])
{
cnt = dp[i];
index = i;
} printf("%d\n",cnt);
ans[--cnt] = a[index].id; while(path[index]!=index)
{
ans[--cnt] = a[path[index]].id;
index = path[index];
}
printf("%d",ans[cnt++]);
while(ans[cnt]!=)
{
printf(" %d",ans[cnt++]);
}
puts("");
}
return ;
}

当然也可以建图(dag图),然后求最长路, 最长路的一种求法就是进行拓扑排序,然后进行最长递增子序列dp,  拓扑排序同上面的排序一样,也是为了消除后效性

然后这种做法,相当于上面,太复杂了。 但是是为了天马行空的想法而A题,而不是为了A题而A题。

 /*
建图(dag图),
拓扑排序
dp
*/ #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stack>
using namespace std;
const int INF = <<;
struct node
{
int dimension[]; }a[];
bool canInput[][];//canInput[i][j]判断i能不能放到j里面去
int dp[];
int path[];
int ans[];
int in[];
int sequeue[];
int main()
{
int n,k,i,j,z;
while(scanf("%d%d",&k,&n)!=EOF)
{
memset(ans,,sizeof(ans));
memset(canInput,false,sizeof(canInput));
memset(dp,,sizeof(dp));
memset(in,,sizeof(in));
for(i=; i<k; ++i)
{
dp[i] = ;
path[i] = i;
for(j=; j<n; ++j)
{
scanf("%d",&a[i].dimension[j]);
}
sort(a[i].dimension,a[i].dimension+n);
} for(i=; i<k; ++i)//预处理,建图
for(j=i+; j<k; ++j)
{
bool can = true;
for(z=; z<n; ++z)
{
if(a[i].dimension[z] >= a[j].dimension[z])
can = false;
}
if(can)
canInput[i][j] = true;
can = true;
for(z=; z<n; ++z)
{
if(a[i].dimension[z] <= a[j].dimension[z])
can = false;
}
if(can)
canInput[j][i] = true; }
//每个结点的入度
for(i=; i<k; ++i)
{
for(j=; j<k; ++j)
if(canInput[i][j])
in[j]++;
}
//拓扑排序,sequeue数组存在排序之后的序列
for(i=; i<k; ++i)
{
for(j=; in[j]&&j<k; ++j)
NULL;
in[j] = -;
sequeue[i] = j;
for(z=; z<k; ++z)
if(canInput[j][z])
in[z]--;
} //对拓扑排序之后的序列进行最长递增子序列的dp
for(i=; i<k; ++i)
for(j=; j<i; ++j)
{
if(canInput[sequeue[j]][sequeue[i]] && dp[j]+>dp[i])//sequeue[i]
{
dp[i] = dp[j]+;
path[i] = j;
}
}
int cnt = ,index;
for(i=; i<k; ++i)
if(cnt < dp[i])
{
cnt = dp[i];
index = i;
}
printf("%d\n",cnt); ans[--cnt] = index;
while(path[index] != index)
{
ans[--cnt] = path[index];
index = path[index];
}
//sequeue[i]
printf("%d",sequeue[ans[cnt++]]+);
while(ans[cnt]!=)
{
printf(" %d",sequeue[ans[cnt++]]+);
}
puts("");
}
return ;
}