"《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

时间:2022-08-19 08:30:47

  博文“二分图的最大匹配、完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解。本文介绍部分主要摘自此博文。

  还有其他可参考博文:

  趣写算法系列之--匈牙利算法

  用于二分图匹配的匈牙利算法

1.前言

  二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U 和V ,使得每一条边都分别连接U、V中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

  匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

  最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

  完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

  举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

  增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

  我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。

  匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)   "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)    "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。

2.匈牙利算法实现

  匈牙利算法可基于DFS或BFS实现。本文实现的是基于DFS的。

  具体代码头文件定义为:

 #ifndef HUNGARIAN_H
#define HUNGARIAN_H #include "BFS_n_DFS.h" // 详细代码请转到Github. class Graph_Hun : public Graph_BD
{
public:
Graph_Hun();
virtual ~Graph_Hun();
virtual bool DFS(int vexID);
virtual bool BFS(int vexID);
int hungarian(); void setNumOfLeft(int num);
void setNumOfRight(int num); private:
int matching[MAXNUM];
bool checked[MAXNUM];
int numOfLeft;
int numOfRight;
}; #endif

  实现文件为:

 #include "Hungarian.h"
#include <cassert> Graph_Hun::Graph_Hun()
{
memset(matching, -, sizeof(matching));
memset(checked, false, sizeof(checked));
} Graph_Hun::~Graph_Hun()
{ } bool Graph_Hun::DFS(int vexID)
{
assert(vexID >= && vexID < MAXNUM); vector<int> adjVexes = adj(vexID);
int sz = adjVexes.size();
for (int i = ; i < sz; i++)
{
int adjVex = adjVexes[i];
if (!checked[adjVex])
{
checked[adjVex] = true;
if (matching[adjVex] == - || DFS(matching[adjVex]))
{
matching[adjVex] = vexID;
matching[vexID] = adjVex;
return true;
}
}
}
return false;
} bool Graph_Hun::BFS(int vexID)
{
return true;
} int Graph_Hun::hungarian()
{
int maxMatching = ;
for (int i = ; i < numOfLeft; i++)
{
if (matching[i] == -)
{
memset(checked, false, sizeof(checked));
if (DFS(i))
maxMatching++;
}
}
return maxMatching;
} void Graph_Hun::setNumOfLeft(int num)
{
numOfLeft = num;
} void Graph_Hun::setNumOfRight(int num)
{
numOfRight = num;
}

Hungarian.cpp

  下边将用一个例子来说明利用匈牙利算法求二分图最大匹配的过程。作为例子的二分图如下:

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  图2-1 一个二分图(其中0~1表示二分图左边,6~12表示二分图右边)

  详细的二分图最大匹配过程如下图所示:

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  图2-2 详细的二分图最大匹配过程

  在子图1中,0直接连接到6;在子图2中,1直接连接到7;在子图3中,2试图连接到6(因为是DFS搜索),但6已经连接到0,这时候就要找增广路径了,找到的路径如下图:

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  图2-3 增广路径“2->6->0->7->1->10”

这时将已匹配和未匹配的路径反转就能够得到图2-2中的子图3了。在图2-2的子图4中,3、4分别直接连接到8、9,没有寻找增广路径的过程。而对5来说,并未能找到增广路径,因此5无法匹配。最终的匹配结果如下图:

  "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

  图2-4 二分图最终匹配结果

  

  详细代码请参考自Github.