1,使用异步通信
异步通信显然可以更快的返回响应。从实际经验看,对高吞吐服务器更大的好处是,系统中的某一服务出现问题后往往出现雪崩似的服务宕机。这很多都是由于采用同步通信,需要等待其他服务同步通信结束后,其占用资源才能得到释放。而这些资源往往是socket连接、线程、数据库连接等比较重的资源。因此请慎重使用同步通信。如果你真的需要他,可以用个mock同步。正如Tim Yang所说:很多远程服务调用是在关键路径中,它可以容忍失败,但是不能容忍堵塞。
2,使用NIO
NIO几乎是Java cluster的基石。大量分布式开源项目都基于此项技术。其好处是用较低的系统开销处理大量消息。在Intel(R) Pentium(R) 4 CPU 3.00GHz/1G内存的普通PC上跑基于NIO/TCP的RTSP测试,每秒处理1K个RTSP消息是没有问题的。关于NIO的架构可以参考开源项目MINA,但要注意的是,不要直接用处理NIO消息的线程处理逻辑。
3,尽量不使用锁
如果你在高性能服务器逻辑中看到同步锁,就要小心了。我们希望服务器可以同时并发的尽量多的处理请求,而同步锁恰恰摁住了业务的咽喉。同时如果线程设计有问题而导致大量线程争夺同一把锁,最坏的情况(超过1K+线程)我曾见过JVM要用几个小时来调度一个线程占锁(为什么?请牛人解释)。解决的办法就是:1,尽量不用。可能么?在一定程度上是可能的,比如我曾使用一致性哈希算法解决资源sticky的问题。用算法替代同步,是一个思路;2,尽量减少锁的范围,事同步锁影响的逻辑越少越好。效果也很明显;3,使用数据库更新替代同步也是一个思路,虽然我自己不是很喜欢,但是从实际效果看使用数据库,特别是用存储过程。在压力不大的情况也是个简单有效的方法。
4,减少GC
Full GC对Java服务器性能的影响是致命的,特别是当JVM管理着较大内存时。即使是在小型应用,例如Old区只分配512M内存,一次Full GC都可能耗时2~3秒,这意味着你所有的服务都会中断。尽量减少Full GC的次数绝对是我们的目标。
首先,合理的配置GC参数,采用ParallelGC和 ConcMarkSweepGC,即并发和增量GC。CMS,全称Concurrent Low Pause Collector,CMS用两次短暂停来替代串行标记整理算法的长暂停。
第二,打出GC log,在性能测试阶段,检查你的GC是否OK。系统在线测试时也可以提供宝贵的track。
-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps
给出一个实际服务器GC参数为例,
1
JAVA_OPTS=" -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+DisableExplicitGC
2
JAVA_OPTS=" -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:ParallelGCThreads=8
3
JAVA_OPTS="-Xms256m -Xmx640m -XX:NewSize=128m -XX:MaxNewSize=256m -Xss128k
4
JAVA_OPTS=" -XX:PermSize=64m -XX:MaxPermSize=128m
5
JAVA_OPTS=" -XX:SurvivorRatio=14 -XX:TargetSurvivorRatio=90 -XX:MaxTenuringThreshold=16
5,数据库前Cache
用queue缓存数据,一次写入多个数据。可以用多个线程同时写入数据库。在实际系统中,用多个线程同时读取cache并写入Mysql是效率很高的。
6,增加数据库索引
看起来很弱对吧?可是我真的遇到过靠加个简单的索引解决过一个很严重的性能问题。系统瓶颈的多数问题都存在于数据库和线程的使用不当上,所以还是要强调一下。
7,Master-Slave Mysql
Mysql有一篇很有名的文章来解释在Master-Slave结构下提高读效率的文章。大致就是说Mysql基准测试下max_read=1200次/s。在读写比例为9:1的情况下,通常写的时间比读的时间多一倍。假设有N个slave,如果只用slave来读,公式如下:
Max reads = 1200 – 2 * writes
Max Reads = 9 * writes / (N + 1) (读为9倍的写,平均到N+1个Mysql上)
9 * writes / (N + 1) + 2 *writes = 1200
Writes = 1200/ (2 + 9/(N+1))
结论是N=1,每秒增加到184次写
N = 8,增加到400次写
其中需要考虑的是复制多份binlog所占的网络带宽和对Master Mysql的影响。但我们在实际应用中认为mysql master-slave binlog增量同步是非常迅速且没有察觉到对性能的负面影响。但一般来说,既然memcached可以很好解决read问题,很少有team做这么大规模的mysql cluster。但小于等于4个还是可以考虑的。
总结,合理的使用异步通信,线程调度,优化GC和解决数据库瓶颈往往可以是构建高性能高并发Java消息处理服务器的利器。但这仅限于逻辑业务相对简单的即时通信系统,如果是设计大量cache调度,比如网页调度。或者是设计海量数据处理服务器,则需要考虑更多的问题。
转自http://maoyidao.iteye.com/blog/1144008
相关文章
- java6 -- fastFdfs在java高并发下中的应用(图片上传),上线测试无误
- RabbitMQ 优点和缺点- 消息可靠性:RabbitMQ 提供了持久化功能和消息确认机制,确保消息在各种情况下都能可靠地存储和处理。 灵活的路由:通过多种交换机类型和绑定规则,RabbitMQ 能够灵活地路由消息到指定的队列。 支持多种消息协议:实现了 AMQP 等(MQTT、STOMP)标准化、开放的消息队列协议,使其能够与多种语言编写的应用程序进行通信。 插件化扩展:RabbitMQ 提供了丰富的插件系统,可以通过插件扩展功能,如死信队列、压缩、追踪等。 高可用性:支持集群模式和镜像队列,确保服务的可用性 易用性和可管理性:提供了丰富的 API 和管理工具,以及多种客户端库和框架支持,易于集成和使用。 多语言支持:RabbitMQ 支持多种编程语言的客户端,包括 Java、Python、Ruby、C#、Node.js 等,方便开发人员集成到各种应用中。 高性能:在处理大量并发消息时表现出色。 广泛的社区支持:拥有庞大的开发者社区和丰富的文档资源。 劣势: 性能和吞吐量较低:相比于 Apache Kafka 等面向大数据流处理的消息队列系统,RabbitMQ 的吞吐量较低,不适合处理海量的实时数据流。RabbitMQ 的设计更注重消息的可靠性和灵活性,而非极高的吞吐性能。
- JAVA架构师眼中的高并发架构,分布式架构 应用服务器集群
- Java 大型系统高并发大数据的处理方式
- 构建高性能高并发Java系统
- 构建高性能高并发Java系统
- 《分布式JAVA应用 基础与实践》 第七章 构建可伸缩的系统
- 看过来!商城系统的三高(高并发、高性能、高可用)了解一下!
- java亿级流量电商详情页系统的大型高并发与高可用缓存架构实战视频教程
- 构建高性能服务(二)java高并发锁的3种实现