【转】C++拷贝构造函数详解

时间:2023-03-09 17:31:50
【转】C++拷贝构造函数详解

一、什么是拷贝构造函数

首先对于普通类型的对象来说,它们之间的复制是很简单的,例如:

int a=;
int b=a;

而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量。

下面看一个类对象拷贝的简单例子。

#include <iostream>
using namespace std; class CExample {
private:
 int a;
public:
//普通构造函数
 CExample(int b)
 { a = b;} //一般函数
 void Show ()
 {
cout<<a<<endl;
}
}; int main()
{
 CExample A(); //这里调用的是普通构造函数
 CExample B = A; //注意这里的对象初始化要调用拷贝构造函数,而非赋值
  B.Show ();
 return ;
}

运行程序,屏幕输出100。从以上代码的运行结果可以看出,系统为对象B分配了内存并完成了与对象A的复制过程。(实际是编译器给我们自动产生一个拷贝构造函数)。就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过程的。

下面举例说明拷贝构造函数的工作过程。

#include <iostream>
using namespace std; class CExample {
private:
int a;
public:
//普通构造函数
CExample(int a)
{
a = b;
}
//拷贝构造函数
CExample(const CExample& C)
{
a = C.a;
} //一般函数
void show()
{
cout << a << endl;
} }; int main()
{
CExample A();// 这里调用普通构造函数
CExample B = A; // 调用拷贝构造函数
// CExample B(A); 也是一样的,会调用拷贝构造函数
B.show();
return ;
}

CExample(const CExample& C)  就是我们自定义的拷贝构造函数。可见,拷贝构造函数是一种特殊的构造函数,函数的名称必须和类名称一致,它必须的一个参数是本类型的一个引用变量

二、拷贝构造函数的调用时机

在C++中,下面三种对象需要调用拷贝构造函数!

1、对象以值传递的方式传入函数参数

class CExample
{
private:
int a; public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
} //拷贝构造
CExample(const CExample& C)
{
a = C.a;
cout<<"copy"<<endl;
} //析构函数
~CExample()
{
cout<< "delete: "<<a<<endl;
} void Show ()
{
cout<<a<<endl;
}
}; //全局函数,传入的是对象
void g_Fun(CExample C)
{
cout<<"test"<<endl;
} int main()
{
CExample test();
//传入对象
g_Fun(test); return ;
}

调用g_Fun()时,会产生以下几个重要步骤:

(1)test对象传入形参时,会先产生一个临时变量,就叫C吧。

(2)然后调用拷贝构造函数把test的值给C。这两个步骤有点像:CExample C(test);

(3)等g_Fun()执行完后,析构掉C对象。

2、对象以值传递的方式从函数返回

class CExample
{
private:
int a; public:
//构造函数
CExample(int b)
{
a = b;
} //拷贝构造
CExample(const CExample& C)
{
a = C.a;
cout<<"copy"<<endl;
} void Show ()
{
cout<<a<<endl;
}
}; //全局函数
CExample g_Fun()
{
CExample temp();
return temp;
} int main()
{
g_Fun();
return ;
}

当g_Fun()函数执行到return时,会产生以下几个重要步骤:

(1)先会产生一个临时变量,就叫XXXX吧。

(2)然后调用拷贝构造函数把temp的值给XXXX。整个这两个步骤有点像CExample XXXX(temp);

(3)在函数执行到最后先析构temp局部变量;

(4)等g_Fun()执行完后再析构掉XXXX对象。

3、对象需要通过另外一个对象进行初始化

CExample A(); //这里调用的是普通构造函数
CExample B = A; //调用拷贝构造函数
// CExample B(A); //还有这一句

后两句都会调用拷贝构造函数。

三、浅拷贝和深拷贝

1、默认拷贝构造函数

很多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数参数或者函数返回对象都能很好地进行,这是因为编译器会给我们自动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数很简单,仅仅使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有以下形式:

Rect::Rect(const Rect& r)
{
width = r.width;
height = r.height;
}

当然,以上代码不用我们编写,编译器会为我们自动生成。但是如果认为这样就可以解决对象的复制问题,那就错了,让我们来考虑以下一段代码:

class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
}; int Rect::count = ; // 初始化计数器 int main()
{
Rect rect1;
cout<<"The count of Rect: "<<Rect::getCount()<<endl; Rect rect2(rect1); // 使用rect1复制rect2,此时应该有两个对象
cout<<"The count of Rect: "<<Rect::getCount()<<endl; return ;
}

这段代码对前面的类,加入了一个静态成员,目的是进行计数。在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,按照理解,此时应该有两个对象存在,但实际程序运行时,输出的都是1,反映出只有1个对象。此外,在销毁对象时,由于会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。

说明执行Rect rect2(rect1);时,调用的是拷贝构造函数,而不是普通构造函数。

出现这些问题最根本的在于复制对象时,计数器没有递增,我们重新编写拷贝构造函数,如下:

class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
Rect(const Rect& r) // 拷贝构造函数
{
width = r.width;
height = r.height;
count++; // 计数器加1
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
};

2、浅拷贝

所谓浅拷贝,指的是在对象复制时,只对对象中的数据成员进行简单的赋值,默认拷贝构造函数执行的也是浅拷贝。大多数情况下“浅拷贝”已经能很好地工作了,但是一旦对象存在了动态成员,那么浅拷贝就会出问题了。让我们考虑如下一段代码:

class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int();
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
}; int main()
{
Rect rect1;
Rect rect2(rect1); // 复制对象
return ;
}

在这段代码运行结束之前,会出现一个运行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:

在运行定义rect1对象后,由于在构造函数中有一个动态分配的语句,因此执行后的内存情况大致如下:

【转】C++拷贝构造函数详解

在使用rect1复制rect2时,由于执行的是浅拷贝,只是将成员的值进行赋值,这时 rect2p=rect1.p,也即这两个指针指向了堆里的同一个空间,如下图所示:

【转】C++拷贝构造函数详解

当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们需要的不是两个p有相同的值,而是两个p指向的空间有相同的值,解决办法就是使用“深拷贝”。

3、深拷贝

在“深拷贝”的情况下,对于对象中动态成员,就不能仅仅简单地赋值了,而应该重新动态分配空间,如上面的例子就应该按照如下的方式进行处理:

class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int();
}
Rect(const Rect& r)
{
width = r.width;
height = r.height;
p = new int; // 为新对象重新动态分配空间
*p = *(r.p);
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
};

此时,在完成对象的复制后,内存的一个大致情况如下:

【转】C++拷贝构造函数详解

此时,rect1的p和rect2的p各自指向一段内存空间,但它们指向的空间具有相同的内容,这就是所谓的“深拷贝”。

3、防止默认拷贝发生

通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧可以防止按值传递——声明一个私有拷贝构造函数。甚至不必去定义这个拷贝构造函数,这就因为拷贝构造函数是私有的,如果用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而可以避免按值传递或返回对象。

// 防止按值传递
class CExample
{
private:
int a; public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
} private:
//拷贝构造,只是声明
CExample(const CExample& C); public:
~CExample()
{
cout<< "delete: "<<a<<endl;
} void Show ()
{
cout<<a<<endl;
}
}; //全局函数
void g_Fun(CExample C)
{
cout<<"test"<<endl;
} int main()
{
CExample test();
//g_Fun(test); 按值传递将出错 return ;
}

四、拷贝构造函数的几个细节

1、拷贝构造函数里能调用private成员变量吗?

解答:这个问题是在网上见的,当时一下子有点晕。其时从名字我们就知道拷贝构造函数就是一个特殊的构造函数,操作的还是自己类的成员变量,所以不受private的限制。

2、以下函数哪个是拷贝构造函数,为什么?

X::X(const X&);
X::X(X);
X::X(X&, int a=);
X::X(X&, int a=, int b=);

解答:对于一个类X,如果一个构造函数的第一个参数是下列之一:

a)X&

b)const X&

c)volatile X&

d)const volatile X&

且没有其它参数或其它参数都有默认值,那么这个函数是拷贝构造函数。

X::X(const X&);  //是拷贝构造函数
X::X(X&, int=); //是拷贝构造函数
X::X(X&, int a=, int b=); //当然也是拷贝构造函数

3、一个类中可以存在多于一个的拷贝构造函数吗?

解答:类中可以存在超过一个拷贝构造函数。

class X {
public:
X(const X&); // const 的拷贝构造
X(X&); // 非const的拷贝构造
};

注意:如果一个类中只存在一个参数为X&的拷贝构造函数,那么就不能对const X或volatile X的对象实行拷贝初始化。

class X {
public:
X();
X(X&);
}; const X cx;
X x = cx; // error

如果一个类中没有定义拷贝构造函数,那么编译器会自动产生一个默认的拷贝构造函数。

这个默认的参数可能为X::X(const X&)或X::X(X&),由编译器根据上下文决定选择哪一个。

转自:http://blog.****.net/lwbeyond/article/details/6202256/